A Review of Visible and Concealed Weapon Detection Techniques Using Machine Learning and Deep Learning
The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapo...
Uloženo v:
| Vydáno v: | SN computer science Ročník 6; číslo 6; s. 611 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapons these days appears to be the most contributing factor to atrocities committed with them. Numerous researches suggest that the mere awareness of access to a weapon increases the possibility that a crime is most likely to occur. The most dangerous crimes have been committed in countries with loose laws on the possession and ownership of guns. Governments and security agencies around the world have been working tirelessly to come up with efficient mechanisms to counter the ever-increasing threat of guns. Advancements in computer vision technology appear to be the silver lining that can guide the efforts towards making the world a safer place. After numerous trials and errors over the years, the researchers have zeroed in on the automatic weapon detection in public as well as private spaces to be the best solution to combat the increasing incidents of gun violence. CCTV cameras have long been used as monitoring devices, but with technological advancements they can be transformed into intelligent alerting devices that can sound alarms even in the absence of a human operator, in case of an anomaly detection. Autonomous detection through CCTV surveillance has replaced walk-through systems, since automatic systems are more proactive, less invasive, and less obvious to perpetrators of crime. As far as detection is concerned, Faster R-CNN and YOLO algorithms seem to be the preferred choices. From the research, it has been demonstrated that the techniques of pre-processing, augmentation, use of realistic and synthetic datasets improve the performance of detection. To help researchers in the field of automatic weapon detection, an extensive review has been done with the aim of covering the developments that have been done in the said field along with future directions and challenges associated with it. This review covers various machine learning, deep learning algorithms used for weapon detection, as well as the various datasets and the multiple challenges associated with the field. |
|---|---|
| AbstractList | The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapons these days appears to be the most contributing factor to atrocities committed with them. Numerous researches suggest that the mere awareness of access to a weapon increases the possibility that a crime is most likely to occur. The most dangerous crimes have been committed in countries with loose laws on the possession and ownership of guns. Governments and security agencies around the world have been working tirelessly to come up with efficient mechanisms to counter the ever-increasing threat of guns. Advancements in computer vision technology appear to be the silver lining that can guide the efforts towards making the world a safer place. After numerous trials and errors over the years, the researchers have zeroed in on the automatic weapon detection in public as well as private spaces to be the best solution to combat the increasing incidents of gun violence. CCTV cameras have long been used as monitoring devices, but with technological advancements they can be transformed into intelligent alerting devices that can sound alarms even in the absence of a human operator, in case of an anomaly detection. Autonomous detection through CCTV surveillance has replaced walk-through systems, since automatic systems are more proactive, less invasive, and less obvious to perpetrators of crime. As far as detection is concerned, Faster R-CNN and YOLO algorithms seem to be the preferred choices. From the research, it has been demonstrated that the techniques of pre-processing, augmentation, use of realistic and synthetic datasets improve the performance of detection. To help researchers in the field of automatic weapon detection, an extensive review has been done with the aim of covering the developments that have been done in the said field along with future directions and challenges associated with it. This review covers various machine learning, deep learning algorithms used for weapon detection, as well as the various datasets and the multiple challenges associated with the field. |
| ArticleNumber | 611 |
| Author | Bhatia, Rekha Sandhu, Simratjit kaur |
| Author_xml | – sequence: 1 givenname: Simratjit kaur orcidid: 0009-0004-3106-3087 surname: Sandhu fullname: Sandhu, Simratjit kaur email: simrat.sandhu2020@gmail.com organization: Department of Computer Science, Punjabi University – sequence: 2 givenname: Rekha surname: Bhatia fullname: Bhatia, Rekha organization: Department of Computer Science, Punjabi University |
| BookMark | eNp9kM1OwzAQhC1UJErpC3CyxDngnyROjlULBakICbVwtBxn3boqTrBbEG-PQxBw4rSr1Tezu3OKBq5xgNA5JZeUEHEVUlaKMiEsS0hKBU_IERqyPKdJURIx-NOfoHEIW0IiStI0z4bITPAjvFl4x43BTzbYagdYuRpPG6dB7aDGz6DaxuEZ7EHvbeyWoDfOvh4g4FWwbo3vld5YB3gByrtu0BnMANqfyRk6NmoXYPxdR2h1c72c3iaLh_nddLJINC0ESQDKklVQMMVqTVMGPBNGc10LYpiomWG1YpUQkahoxrNKFfE1nqu0qAzomo_QRe_b-qY7cC-3zcG7uFJyxoTIaZaSSLGe0r4JwYORrbcvyn9ISmQXqewjlTEn-RWp7ES8F4UIuzX4X-t_VJ-qTnqx |
| Cites_doi | 10.3390/buildings14123777 10.1007/978-3-642-30721-8_15 10.3390/app11136085 10.1109/ICESC48915.2020.9155832 10.1007/s13369-021-05401-4 10.3390/app11167535 10.1007/978-3-030-22750-0_2 10.5244/C.2.23 10.1109/ICoDT252288.2021.9441538 10.1145/3154979.3154988 10.1109/TPAMI.2016.2577031 10.1109/ICoDT252288.2021.9441523 10.1109/ICCV.2015.169 10.1016/j.neucom.2017.05.012 10.1109/ACCESS.2021.3059170 10.1109/ACCESS.2021.3110335 10.1007/11744023_32 10.1109/EISIC49498.2019.9108871 10.1016/j.neucom.2021.01.075 10.1109/CICN51697.2021.9574690 10.1007/978-981-13-2414-7_3 10.1109/CogSIMA.2013.6523822 10.1016/j.ins.2014.03.128 10.1109/EESCO.2015.7253863 10.1016/j.knosys.2020.105590 10.1109/iWEM.2018.8536660 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2016.91 10.1007/s11042-023-16231-x 10.1109/EuCAP.2014.6902403 10.1109/CVPR.2018.00678 10.1109/SMC52423.2021.9659207 10.1109/ICSSS49621.2020.9202254 10.1109/JSTSP.2022.3171168 10.1007/s00521-021-06317-8 10.1109/CVPR.2014.81 10.1109/ICASSP49357.2023.10095884 10.1109/ICIIP47207.2019.8985972 10.3390/s16010047 10.1007/978-3-031-72751-1_1 10.3934/mbe.2023956 10.1051/e3sconf/202339101071 10.1016/j.neucom.2018.10.076 10.1049/iet-ipr.2020.0706 10.1007/978-3-030-31321-0_38 10.3390/s20061678 10.1016/j.engappai.2020.104094 10.1016/j.imavis.2022.104406 10.2139/ssrn.4143822 10.3390/app14125277 10.1109/ICCV.1999.790410 10.1016/j.neunet.2020.09.013 10.1016/j.procs.2015.06.083 10.22214/ijraset.2021.37622 10.1109/GET.2016.7916679 10.1007/s00521-020-05365-w 10.1109/ITIKD56332.2023.10099733 10.1109/APSIPAASC47483.2019.9023182 10.3390/app12125772 10.3390/app9152965 10.1002/mop.31688 10.1109/ICIIS51140.2020.9342681 10.4018/IJSKD.2020010103 10.1109/SMART-TECH49988.2020.00045 10.3934/mbe.2023125 10.3390/s24216911 10.1007/978-3-319-46448-0_2 10.1109/CICT48419.2019.9066227 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s42979-025-04173-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_025_04173_0 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABRTQ CITATION KOV JQ2 |
| ID | FETCH-LOGICAL-c1870-ee992be82a2dc142e357fc3cd70f27d2f2da2b77e82b1535ba866136a48bfecd3 |
| IEDL.DBID | RSV |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 14:51:41 EST 2025 Sat Nov 29 07:46:06 EST 2025 Tue Jul 08 01:14:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Optimized weapon detection Concealed weapon detection Visible weapon detection Faster R-CNN detection Weapon detection challenges Gun detection Weapon detection review YOLO detection Edge device detection Pistol detection CCTV surveillance SSD weapon detection Object detection Weapon datasets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1870-ee992be82a2dc142e357fc3cd70f27d2f2da2b77e82b1535ba866136a48bfecd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-3106-3087 |
| PQID | 3227761540 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_3227761540 crossref_primary_10_1007_s42979_025_04173_0 springer_journals_10_1007_s42979_025_04173_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2025 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | 4173_CR26 P Bhagyalakshmi (4173_CR25) 2019; 3 J Lim (4173_CR82) 2021; 97 4173_CR28 A Bhatt (4173_CR60) 2023; 20 OA Arqub (4173_CR89) 2014; 279 4173_CR20 4173_CR65 4173_CR23 N Vallez (4173_CR33) 2021; 33 4173_CR67 4173_CR24 ZR Burnayev (4173_CR64) 2023; 14 4173_CR68 RM Aftab (4173_CR27) 2021; 5 R Miezianko (4173_CR87) 2006; 2 4173_CR7 R Debnath (4173_CR14) 2020; 14 4173_CR37 4173_CR6 4173_CR38 L He (4173_CR58) 2024; 14 4173_CR5 S Ren (4173_CR10) 2016; 39 4173_CR39 X Shi (4173_CR69) 2019; 61 S Naik (4173_CR32) 2021; 9 4173_CR9 D Romero (4173_CR42) 2019; 9 4173_CR74 4173_CR31 4173_CR76 A Jaleel (4173_CR50) 2022; 20 4173_CR34 4173_CR78 4173_CR35 A Velasco-Mata (4173_CR61) 2021; 33 4173_CR79 A Wang (4173_CR55) 2025; 37 JLS González (4173_CR80) 2020; 132 4173_CR71 D Berardini (4173_CR66) 2024; 83 B Aman (4173_CR40) 2021; 9 Z Abo-Hammour (4173_CR88) 2014; 2014 MK Galab (4173_CR30) 2021; 46 J Li (4173_CR54) 2024; 14 4173_CR48 4173_CR49 RK Tiwari (4173_CR16) 2015; 54 A Krizhevsky (4173_CR8) 2012; 25 4173_CR41 S Ahmed (4173_CR47) 2022; 12 X Gao (4173_CR77) 2022; 16 4173_CR86 M Grega (4173_CR15) 2016; 16 4173_CR43 MT Bhatti (4173_CR45) 2021; 9 4173_CR46 4173_CR81 N Geetha (4173_CR44) 2021; 10 AH Ashraf (4173_CR59) 2022; 70 L Pang (4173_CR73) 2020; 20 R Olmos (4173_CR36) 2018; 275 4173_CR3 4173_CR2 4173_CR1 HAH Mahmoud (4173_CR72) 2020; 11 W Tan (4173_CR75) 2017; 20 V Kaya (4173_CR29) 2021; 11 A Castillo (4173_CR84) 2019; 330 J Mei (4173_CR56) 2024; 24 4173_CR17 M Parande (4173_CR70) 2015; 4 4173_CR18 4173_CR19 J Ruiz-Santaquiteria (4173_CR62) 2021; 9 4173_CR51 K Vijayakumar (4173_CR52) 2023; 20 4173_CR53 4173_CR11 F Pérez-Hernández (4173_CR83) 2020; 194 4173_CR12 4173_CR13 4173_CR57 J Salido (4173_CR63) 2021; 11 MK Mohamed (4173_CR22) 2020; 12 V Manikandan (4173_CR21) 2022; 120 J Iqbal (4173_CR85) 2021; 440 PI Wilson (4173_CR4) 2006; 21 |
| References_xml | – volume: 10 start-page: 2278 issue: 05 year: 2021 ident: 4173_CR44 publication-title: Int J Eng Res Technol (IJERT) – volume: 14 start-page: 3777 issue: 12 year: 2024 ident: 4173_CR58 publication-title: Buildings doi: 10.3390/buildings14123777 – ident: 4173_CR19 doi: 10.1007/978-3-642-30721-8_15 – volume: 11 start-page: 6085 issue: 13 year: 2021 ident: 4173_CR63 publication-title: Appl Sci doi: 10.3390/app11136085 – ident: 4173_CR13 doi: 10.1109/ICESC48915.2020.9155832 – volume: 46 start-page: 4049 issue: 4 year: 2021 ident: 4173_CR30 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-05401-4 – volume: 11 start-page: 7535 issue: 16 year: 2021 ident: 4173_CR29 publication-title: Appl Sci doi: 10.3390/app11167535 – ident: 4173_CR38 doi: 10.1007/978-3-030-22750-0_2 – ident: 4173_CR3 doi: 10.5244/C.2.23 – ident: 4173_CR28 doi: 10.1109/ICoDT252288.2021.9441538 – ident: 4173_CR34 doi: 10.1145/3154979.3154988 – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 4173_CR10 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 3 start-page: 3 year: 2019 ident: 4173_CR25 publication-title: Int J Trend Sci Res Dev – ident: 4173_CR81 – ident: 4173_CR46 doi: 10.1109/ICoDT252288.2021.9441523 – volume: 20 start-page: 22 year: 2022 ident: 4173_CR50 publication-title: Math Prbl Eng – ident: 4173_CR9 doi: 10.1109/ICCV.2015.169 – volume: 275 start-page: 66 year: 2018 ident: 4173_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.012 – volume: 70 start-page: 2761 year: 2022 ident: 4173_CR59 publication-title: CMC-Comput Mater Contin – volume: 9 start-page: 34366 year: 2021 ident: 4173_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059170 – volume: 2 start-page: 5 year: 2006 ident: 4173_CR87 publication-title: Terravic Res Infrared Database – volume: 9 start-page: 123815 year: 2021 ident: 4173_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110335 – ident: 4173_CR2 doi: 10.1007/11744023_32 – ident: 4173_CR24 doi: 10.1109/EISIC49498.2019.9108871 – volume: 440 start-page: 310 year: 2021 ident: 4173_CR85 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.075 – volume: 9 start-page: 3707 year: 2021 ident: 4173_CR40 publication-title: SSRN Electron J – ident: 4173_CR41 doi: 10.1109/CICN51697.2021.9574690 – ident: 4173_CR23 doi: 10.1007/978-981-13-2414-7_3 – ident: 4173_CR39 doi: 10.1109/CogSIMA.2013.6523822 – volume: 279 start-page: 396 year: 2014 ident: 4173_CR89 publication-title: Inf Sci doi: 10.1016/j.ins.2014.03.128 – ident: 4173_CR17 doi: 10.1109/EESCO.2015.7253863 – volume: 194 year: 2020 ident: 4173_CR83 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105590 – ident: 4173_CR78 doi: 10.1109/iWEM.2018.8536660 – ident: 4173_CR43 doi: 10.1007/978-3-319-10590-1_53 – ident: 4173_CR11 doi: 10.1109/CVPR.2016.91 – volume: 83 start-page: 19109 issue: 7 year: 2024 ident: 4173_CR66 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16231-x – ident: 4173_CR76 doi: 10.1109/EuCAP.2014.6902403 – volume: 4 start-page: 182 issue: 9 year: 2015 ident: 4173_CR70 publication-title: Int J Sci Res (IJSR) – ident: 4173_CR79 doi: 10.1109/CVPR.2018.00678 – ident: 4173_CR51 – ident: 4173_CR65 doi: 10.1109/SMC52423.2021.9659207 – ident: 4173_CR6 doi: 10.1109/ICSSS49621.2020.9202254 – volume: 16 start-page: 791 issue: 4 year: 2022 ident: 4173_CR77 publication-title: IEEE J Select Top Signal Process doi: 10.1109/JSTSP.2022.3171168 – volume: 33 start-page: 17273 issue: 24 year: 2021 ident: 4173_CR61 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06317-8 – ident: 4173_CR5 doi: 10.1109/CVPR.2014.81 – ident: 4173_CR74 doi: 10.1109/ICASSP49357.2023.10095884 – ident: 4173_CR86 – ident: 4173_CR71 doi: 10.1109/ICIIP47207.2019.8985972 – volume: 16 start-page: 47 issue: 1 year: 2016 ident: 4173_CR15 publication-title: Sensors doi: 10.3390/s16010047 – ident: 4173_CR53 doi: 10.1007/978-3-031-72751-1_1 – volume: 20 start-page: 21611 issue: 12 year: 2023 ident: 4173_CR52 publication-title: Math Biosci Eng doi: 10.3934/mbe.2023956 – ident: 4173_CR49 doi: 10.1051/e3sconf/202339101071 – volume: 330 start-page: 151 year: 2019 ident: 4173_CR84 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.076 – volume: 14 start-page: 4663 issue: 17 year: 2020 ident: 4173_CR14 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2020.0706 – ident: 4173_CR35 doi: 10.1007/978-3-030-31321-0_38 – volume: 25 start-page: 9 year: 2012 ident: 4173_CR8 publication-title: Adv Neural Inform Process Syst – volume: 20 start-page: 1678 issue: 6 year: 2020 ident: 4173_CR73 publication-title: Sensors doi: 10.3390/s20061678 – volume: 97 year: 2021 ident: 4173_CR82 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104094 – volume: 2014 issue: 1 year: 2014 ident: 4173_CR88 publication-title: Discret Dyn Nat Soc – volume: 120 year: 2022 ident: 4173_CR21 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2022.104406 – ident: 4173_CR26 doi: 10.2139/ssrn.4143822 – volume: 14 start-page: 5277 issue: 12 year: 2024 ident: 4173_CR54 publication-title: Appl Sci doi: 10.3390/app14125277 – volume: 5 start-page: 27 issue: 4 year: 2021 ident: 4173_CR27 publication-title: Lahore Garrison Univ Res J Comput Sci Inform Technol – ident: 4173_CR1 doi: 10.1109/ICCV.1999.790410 – ident: 4173_CR57 – ident: 4173_CR7 – volume: 132 start-page: 297 year: 2020 ident: 4173_CR80 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.09.013 – volume: 54 start-page: 703 year: 2015 ident: 4173_CR16 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2015.06.083 – volume: 9 start-page: 1573 year: 2021 ident: 4173_CR32 publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2021.37622 – ident: 4173_CR68 doi: 10.1109/GET.2016.7916679 – volume: 33 start-page: 5885 issue: 11 year: 2021 ident: 4173_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05365-w – ident: 4173_CR48 doi: 10.1109/ITIKD56332.2023.10099733 – volume: 21 start-page: 127 issue: 4 year: 2006 ident: 4173_CR4 publication-title: J Comput Sci Coll – ident: 4173_CR31 doi: 10.1109/APSIPAASC47483.2019.9023182 – volume: 37 start-page: 107984 year: 2025 ident: 4173_CR55 publication-title: Adv Neural Inf Process Syst – volume: 12 start-page: 5772 issue: 12 year: 2022 ident: 4173_CR47 publication-title: Appl Sci doi: 10.3390/app12125772 – volume: 11 start-page: 2 year: 2020 ident: 4173_CR72 publication-title: Int J Adv Comput Sci Appl – volume: 9 start-page: 2965 issue: 15 year: 2019 ident: 4173_CR42 publication-title: Appl Sci doi: 10.3390/app9152965 – volume: 61 start-page: 1116 issue: 4 year: 2019 ident: 4173_CR69 publication-title: Microw Opt Technol Lett doi: 10.1002/mop.31688 – volume: 20 start-page: 17 year: 2017 ident: 4173_CR75 publication-title: Int J Antennas Propag – ident: 4173_CR18 – ident: 4173_CR67 doi: 10.1109/ICIIS51140.2020.9342681 – volume: 14 start-page: 5 year: 2023 ident: 4173_CR64 publication-title: Int J Adv Comput Sci Appl – volume: 12 start-page: 49 issue: 1 year: 2020 ident: 4173_CR22 publication-title: Int J Sociotechnol Knowl Dev (IJSKD) doi: 10.4018/IJSKD.2020010103 – ident: 4173_CR37 doi: 10.1109/SMART-TECH49988.2020.00045 – volume: 20 start-page: 2669 issue: 2 year: 2023 ident: 4173_CR60 publication-title: Math Biosci Eng doi: 10.3934/mbe.2023125 – volume: 24 start-page: 6911 issue: 21 year: 2024 ident: 4173_CR56 publication-title: Sensors doi: 10.3390/s24216911 – ident: 4173_CR12 doi: 10.1007/978-3-319-46448-0_2 – ident: 4173_CR20 doi: 10.1109/CICT48419.2019.9066227 |
| SSID | ssj0002504465 |
| Score | 2.2988672 |
| SecondaryResourceType | review_article |
| Snippet | The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 611 |
| SubjectTerms | Accuracy Algorithms Anomalies Artificial neural networks Automation Cameras Closed circuit television Computer Imaging Computer Science Computer Systems Organization and Communication Networks Computer vision Concealed weapons detection Crime Data Structures and Information Theory Datasets Deep learning Eigenvalues Gun violence Guns Information Systems and Communication Service Machine learning Mass murders Pattern Recognition and Graphics Public safety Review Article Sensors Software Engineering/Programming and Operating Systems Surveillance Synthetic data Violence Vision Weapons |
| Title | A Review of Visible and Concealed Weapon Detection Techniques Using Machine Learning and Deep Learning |
| URI | https://link.springer.com/article/10.1007/s42979-025-04173-0 https://www.proquest.com/docview/3227761540 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LS8MwOMj04MX5xMeUHLxpoE3aJj2OzeFBh-icu5U8ZSDdWKe_369Z26HoQa_NlxC-d_q9ELpULHEqjstaJxeQyAhHJE8tcSziwggdWz8MZnzHh0MxmaQPVVFYUWe71yFJr6mbYjfQnDwl5fjVIAo5I_BQ3wRzJ8qBDY9P4-bPStmUK0riqkLm561frdDatfwWDfVGZtD-3_V20U7lVOLuigv20IbN91G7HtiAK_k9QK6LV7EAPHN4PAVpeLNY5gb3yuJFMBUGv1g5n-W4b5c-RyvHo7rJa4F9egG-9-mXFledWV_9AX1r582XQ_Q8uBn1bkk1aIHoEOSVWJumVFlBJTU6jKhlMXeaacMDR7mhjhpJFecAoUBDxkoKMOsskZFQzmrDjlArn-X2GGHDYy1k4hg3EtAQpi5UMg2FMsAHOglO0FWN-Gy-6qeRNZ2TPQozQGHmUZgBdKemTVbJVpGBCuIcHLEIlq9rWqyXfz_t9G_gZ2ibenKW2X4d1Fou3u052tIfy2mxuPA89wmpMNJX |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6kCnqxrrhUnYM3HWhmJpnJsbQWxbaI1tpbmFUKkpam-vudTJMURQ96zSyEtyfvve8BcClJZGUY5r1Otomo5hYJFhtkCWVccxUaPwxm1GODAR-P44eiKSwrq93LlKS31FWzm7OcLEb5-NUmDRhB7kN9nTqPlSPmPz6Nqj8rOSgXjcKiQ-bno1-90Cq0_JYN9U6mW__f6-2A7SKohK2lFOyCNZPugXo5sAEW-rsPbAsucwFwauFo4rThzUCRatjOmxedq9DwxYjZNIUds_A1WikcliCvGfTlBbDvyy8NLJBZX_0FHWNm1ZMD8Ny9GbZvUTFoAanA6SsyJo6xNBwLrFVAsSEhs4oozZoWM40t1gJLxtwO6SxkKAV3bp1EgnJpjdLkENTSaWqOANQsVFxEljAtHBmC2AZSxAGX2smBiprH4KokfDJb4mkkFXKyJ2HiSJh4EiZud6PkTVLoVpY4E8SYC8SoW74uebFa_v22k79tvwCbt8N-L-ndDe5PwRb2rM0r_xqgtpi_mzOwoT4Wk2x-7uXvE46_1Ts |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6kinixrrhUnYM3DU0my0yOpbUo1lKw1t6GWaUgaWijv9_JZKmKHsRrZjKEt0_e-94D4JL7keZhmGOdtOsEkmiH4Vg52g8wkUSEyg6DmQzwcEim03j0CcVvq92rlGSBaci7NCVZO5W6XQPfjBXFsZOPYnUDD_uOubSvB3khfX5ff5zUf1nyBl1BFJZomZ9f_eqRVmHmt8yodTj95v8_dQdsl8Em7BTSsQvWVLIHmtUgB1jq9T7QHVjkCOBcw8nMaMmrgiyRsJuDGo0LkfBZsXSewJ7KbO1WAsdV89cltGUH8MGWZSpYdmx9sQf0lErrJwfgqX8z7t465QAGR3hGjx2l4hhxRRBDUngBUn6ItfCFxK5GWCKNJEMcY7ODG8sZckaMu_cjFhCulZD-IWgk80QdAShxKAiLtI8lM2TwYu1xFnuESyMfInKPwVXFBJoWfTZo3VHZkpAaElJLQmp2tyo-0VLnltSYJoxNgBaY5euKL6vl3087-dv2C7A56vXp4G54fwq2kOVsXhDYAo1s8abOwIZ4z2bLxbkVxQ-4Nd4f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Visible+and+Concealed+Weapon+Detection+Techniques+Using+Machine+Learning+and+Deep+Learning&rft.jtitle=SN+computer+science&rft.au=Sandhu%2C+Simratjit+kaur&rft.au=Bhatia%2C+Rekha&rft.date=2025-08-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=6&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-025-04173-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_025_04173_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |