Distributed optimization with faulty nodes: robust aggregation in hyperbolic space

The increasing deployment of distributed machine learning models necessitates robust optimization methods that can tolerate adversarial or faulty nodes. In this work, we propose a robust gradient aggregation method for distributed stochastic gradient descent that leverages hyperbolic geometry. Speci...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 37; no. 26; pp. 21563 - 21605
Main Authors: Ghosh, Subhas Kumar, Vittamsetti, Vijay Monic
Format: Journal Article
Language:English
Published: London Springer London 01.09.2025
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing deployment of distributed machine learning models necessitates robust optimization methods that can tolerate adversarial or faulty nodes. In this work, we propose a robust gradient aggregation method for distributed stochastic gradient descent that leverages hyperbolic geometry. Specifically, local gradients computed at individual nodes are embedded into hyperbolic space using the Poincaré ball model, and their geometric median is computed as a robust aggregate. This aggregated gradient is then mapped back to Euclidean space for the gradient update. We also show that existing robust gradient aggregation methods like Krum can be improved using hyperbolic space. Compared to existing robust aggregation methods, our hyperbolic approach offers improved separation of outlier updates. We provide theoretical convergence guarantees and validate our method on benchmark datasets as well as on a traffic forecasting task, demonstrating its efficacy in mitigating Byzantine failures in distributed federated learning environments.
AbstractList The increasing deployment of distributed machine learning models necessitates robust optimization methods that can tolerate adversarial or faulty nodes. In this work, we propose a robust gradient aggregation method for distributed stochastic gradient descent that leverages hyperbolic geometry. Specifically, local gradients computed at individual nodes are embedded into hyperbolic space using the Poincaré ball model, and their geometric median is computed as a robust aggregate. This aggregated gradient is then mapped back to Euclidean space for the gradient update. We also show that existing robust gradient aggregation methods like Krum can be improved using hyperbolic space. Compared to existing robust aggregation methods, our hyperbolic approach offers improved separation of outlier updates. We provide theoretical convergence guarantees and validate our method on benchmark datasets as well as on a traffic forecasting task, demonstrating its efficacy in mitigating Byzantine failures in distributed federated learning environments.
Author Vittamsetti, Vijay Monic
Ghosh, Subhas Kumar
Author_xml – sequence: 1
  givenname: Subhas Kumar
  orcidid: 0000-0003-1522-7067
  surname: Ghosh
  fullname: Ghosh, Subhas Kumar
  email: subhas.ghosh@westpac.com.au
  organization: Westpac Institutional Bank
– sequence: 2
  givenname: Vijay Monic
  surname: Vittamsetti
  fullname: Vittamsetti, Vijay Monic
  organization: Westpac Institutional Bank
BookMark eNp9kEtLxDAUhYOM4MzoH3AVcF29aR5N3cn4hAFBdB2SNulkmGlq0iLjr7dawZ2ruzjfORe-BZq1obUInRO4JADFVQLgOckg5xkhrOAZHKE5YZRmFLicoTmUbIwFoydokdIWAJiQfI5ebn3qozdDb2scut7v_afufWjxh-832Olh1x9wG2qbrnEMZkg91k0TbTNRvsWbQ2ejCTtf4dTpyp6iY6d3yZ793iV6u797XT1m6-eHp9XNOquILCAT1mopSE2cLqXNC1MWxFFhKDFSGFNyWrK6dGUuDZTGVZV1zDHJhMkpZ2DpEl1Mu10M74NNvdqGIbbjS0VzxpkUkBcjlU9UFUNK0TrVRb_X8aAIqG93anKnRnfqx52CsUSnUhrhtrHxb_qf1hfjz3Q8
Cites_doi 10.1109/JIOT.2020.2991401
10.1109/JIOT.2024.3454064
10.1109/COMST.2018.2844341
10.24432/C53G6X
10.1109/ACCESS.2025.3530297
10.1109/TITS.2024.3493199
10.1109/JIOT.2022.3161050
10.1145/357172.357176
10.1093/comjnl/bxae141
10.1109/ACCESS.2021.3067331
10.1145/3377454
10.1109/JIOT.2018.2867333
10.1017/9781009701853.003
10.1109/CVPR.2008.4587747
10.1145/322186.322188
10.1109/TITS.2022.3157056
10.1038/s41598-024-82759-z
10.1109/TSP.2022.3153135
10.1109/ICSSIT53264.2022.9716331
10.1109/TIA.2024.3430229
10.1109/IJCNN55064.2022.9892326
10.1109/TITS.2024.3510913
10.3390/ijgi10070485
10.1016/j.array.2022.100158
10.1145/3298981
10.1016/0196-6774(82)90004-9
10.1109/ACCESS.2025.3540955
10.1109/JIOT.2024.3462302
10.1109/TNNLS.2020.2978386
10.5555/3304222.3304273
10.1109/TITS.2019.2935152
10.1145/3154503
10.1007/978-94-009-5438-0_20
10.1007/s10479-008-0352-z
10.1145/3701740
10.1145/3447548.3467275
10.1109/TRO.2022.3178296
10.1137/080743706
10.1016/j.jestch.2018.09.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00521-025-11475-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 21605
ExternalDocumentID 10_1007_s00521_025_11475_0
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c1870-6eea861d1fa98e27b971f36b31b86bb95394d9f928b09bfccef4f4846b23540e3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 15:30:52 EST 2025
Sat Nov 29 07:32:48 EST 2025
Tue Sep 02 01:13:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Distributed optimization algorithm
Federated learning
Stochastic gradient descent
Robust aggregation rule
Byzantine resilience
Hyperbolic space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1870-6eea861d1fa98e27b971f36b31b86bb95394d9f928b09bfccef4f4846b23540e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1522-7067
PQID 3245486027
PQPubID 2043988
PageCount 43
ParticipantIDs proquest_journals_3245486027
crossref_primary_10_1007_s00521_025_11475_0
springer_journals_10_1007_s00521_025_11475_0
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 11475_CR28
K Pillutla (11475_CR22) 2022; 70
11475_CR29
11475_CR26
H Rafi (11475_CR8) 2025; 12
11475_CR27
Q Yang (11475_CR3) 2019; 10
J Bai (11475_CR41) 2021; 10
B Akdemir (11475_CR10) 2025; 13
T Landman (11475_CR9) 2025; 13
11475_CR36
W Jian (11475_CR6) 2024; 26
M Mohammadi (11475_CR30) 2018; 20
11475_CR17
11475_CR59
D Dolev (11475_CR20) 1982; 3
J Bian (11475_CR31) 2022; 9
Z Wu (11475_CR35) 2021; 32
JW Cannon (11475_CR52) 1997; 31
11475_CR60
X Yuan (11475_CR33) 2023; 24
11475_CR61
L Lamport (11475_CR18) 1982; 4
J Verbraeken (11475_CR44) 2020; 53
L Bottou (11475_CR42) 1999
R Peter (11475_CR49) 1985; 8
R Xin (11475_CR4) 2025; 57
11475_CR24
11475_CR25
11475_CR23
11475_CR1
11475_CR21
Y Chen (11475_CR48) 2017; 1
11475_CR2
Y Wang (11475_CR7) 2025; 61
J Li (11475_CR16) 2022; 38
E Weiszfeld (11475_CR54) 2009; 167
NN Srinidhi (11475_CR14) 2019; 22
GH Hardy (11475_CR56) 1934
L Zhao (11475_CR39) 2020; 21
11475_CR50
M Pease (11475_CR19) 1980; 27
11475_CR57
11475_CR58
11475_CR11
11475_CR55
11475_CR53
11475_CR51
Y Liu (11475_CR32) 2020; 7
Q Guo (11475_CR40) 2025; 15
Q Liu (11475_CR5) 2024; 26
D Mosk-Aoyama (11475_CR47) 2010; 20
11475_CR37
I Zhou (11475_CR13) 2022; 14
11475_CR38
AL Diedrichs (11475_CR12) 2018; 5
Y Wang (11475_CR34) 2024; 11
SMAA Abir (11475_CR15) 2021; 9
11475_CR46
11475_CR45
11475_CR43
References_xml – volume: 7
  start-page: 7751
  issue: 8
  year: 2020
  ident: 11475_CR32
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2991401
– volume: 11
  start-page: 40656
  issue: 24
  year: 2024
  ident: 11475_CR34
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3454064
– volume: 20
  start-page: 2923
  issue: 4
  year: 2018
  ident: 11475_CR30
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2018.2844341
– ident: 11475_CR60
  doi: 10.24432/C53G6X
– volume: 13
  start-page: 14317
  year: 2025
  ident: 11475_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3530297
– volume: 26
  start-page: 2227
  issue: 2
  year: 2024
  ident: 11475_CR6
  publication-title: Trans Intell Transport Sys
  doi: 10.1109/TITS.2024.3493199
– volume: 9
  start-page: 8364
  issue: 11
  year: 2022
  ident: 11475_CR31
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3161050
– ident: 11475_CR50
– ident: 11475_CR58
– volume: 4
  start-page: 382
  issue: 3
  year: 1982
  ident: 11475_CR18
  publication-title: ACM Trans Program Lang Syst
  doi: 10.1145/357172.357176
– ident: 11475_CR11
  doi: 10.1093/comjnl/bxae141
– volume: 9
  start-page: 50961
  year: 2021
  ident: 11475_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067331
– ident: 11475_CR29
– volume: 53
  start-page: 1
  issue: 2
  year: 2020
  ident: 11475_CR44
  publication-title: ACM Comput Surv
  doi: 10.1145/3377454
– ident: 11475_CR21
– volume: 5
  start-page: 4589
  issue: 6
  year: 2018
  ident: 11475_CR12
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2867333
– ident: 11475_CR25
– volume-title: Inequalities
  year: 1934
  ident: 11475_CR56
– volume: 31
  start-page: 59
  year: 1997
  ident: 11475_CR52
  publication-title: Flavors Geometry
  doi: 10.1017/9781009701853.003
– ident: 11475_CR55
  doi: 10.1109/CVPR.2008.4587747
– volume: 27
  start-page: 228
  issue: 2
  year: 1980
  ident: 11475_CR19
  publication-title: J ACM
  doi: 10.1145/322186.322188
– volume: 24
  start-page: 8738
  issue: 8
  year: 2023
  ident: 11475_CR33
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3157056
– ident: 11475_CR53
– volume: 15
  start-page: 953
  issue: 1
  year: 2025
  ident: 11475_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-82759-z
– volume: 70
  start-page: 1142
  year: 2022
  ident: 11475_CR22
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2022.3153135
– ident: 11475_CR17
  doi: 10.1109/ICSSIT53264.2022.9716331
– ident: 11475_CR57
– volume: 61
  start-page: 1352
  issue: 1
  year: 2025
  ident: 11475_CR7
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2024.3430229
– ident: 11475_CR2
– ident: 11475_CR36
  doi: 10.1109/IJCNN55064.2022.9892326
– volume: 26
  start-page: 2777
  issue: 2
  year: 2024
  ident: 11475_CR5
  publication-title: Trans Intell Transport Sys
  doi: 10.1109/TITS.2024.3510913
– volume: 10
  start-page: 485
  issue: 7
  year: 2021
  ident: 11475_CR41
  publication-title: ISPRS Int J Geo Inf
  doi: 10.3390/ijgi10070485
– ident: 11475_CR26
– ident: 11475_CR43
– volume: 14
  year: 2022
  ident: 11475_CR13
  publication-title: Array
  doi: 10.1016/j.array.2022.100158
– ident: 11475_CR23
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 11475_CR3
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3298981
– ident: 11475_CR46
– start-page: 9
  volume-title: On-line learning and stochastic approximations
  year: 1999
  ident: 11475_CR42
– volume: 3
  start-page: 14
  issue: 1
  year: 1982
  ident: 11475_CR20
  publication-title: J Algorithms
  doi: 10.1016/0196-6774(82)90004-9
– volume: 13
  start-page: 30377
  year: 2025
  ident: 11475_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3540955
– ident: 11475_CR61
– volume: 12
  start-page: 1688
  issue: 2
  year: 2025
  ident: 11475_CR8
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3462302
– ident: 11475_CR27
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 11475_CR35
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– ident: 11475_CR38
  doi: 10.5555/3304222.3304273
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  ident: 11475_CR39
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  ident: 11475_CR48
  publication-title: Proc ACM Meas Anal Comput Syst
  doi: 10.1145/3154503
– ident: 11475_CR1
– volume: 8
  start-page: 283
  year: 1985
  ident: 11475_CR49
  publication-title: Math Stat Appl
  doi: 10.1007/978-94-009-5438-0_20
– volume: 167
  start-page: 7
  issue: 1
  year: 2009
  ident: 11475_CR54
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-008-0352-z
– volume: 57
  start-page: 1
  issue: 5
  year: 2025
  ident: 11475_CR4
  publication-title: ACM Comput Surv
  doi: 10.1145/3701740
– ident: 11475_CR51
– ident: 11475_CR59
– ident: 11475_CR37
  doi: 10.1145/3447548.3467275
– volume: 38
  start-page: 3550
  issue: 6
  year: 2022
  ident: 11475_CR16
  publication-title: IEEE Trans Rob
  doi: 10.1109/TRO.2022.3178296
– ident: 11475_CR28
– volume: 20
  start-page: 3260
  issue: 6
  year: 2010
  ident: 11475_CR47
  publication-title: SIAM J Optim
  doi: 10.1137/080743706
– ident: 11475_CR45
– volume: 22
  start-page: 1
  issue: 1
  year: 2019
  ident: 11475_CR14
  publication-title: Eng Sci Technol Int J
  doi: 10.1016/j.jestch.2018.09.003
– ident: 11475_CR24
SSID ssj0004685
Score 2.3903365
Snippet The increasing deployment of distributed machine learning models necessitates robust optimization methods that can tolerate adversarial or faulty nodes. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 21563
SubjectTerms Accuracy
Artificial Intelligence
Communication
Computation
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Euclidean geometry
Euclidean space
Federated learning
Hyperbolic coordinates
Image Processing and Computer Vision
Machine learning
Network management systems
Nodes
Optimization
Optimization algorithms
Original Article
Privacy
Probability and Statistics in Computer Science
Robustness
Sensors
Traffic flow
Title Distributed optimization with faulty nodes: robust aggregation in hyperbolic space
URI https://link.springer.com/article/10.1007/s00521-025-11475-0
https://www.proquest.com/docview/3245486027
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQMLBQTlEoyAMbRMrhODYbAiqmCnGpW-SzVIIEJS0S_55nN2kBwQBzrKfo-V3f8zsQOk6TlChwNYFhAgCKEDoAKbGBYlYlJrQxkdYvm8gGAzYc8pumKaxuq93bJ0lvqefNbi6DCdA3TgOI4bM0AKC-krppMw6j3z1-6ob0izgBt7iaHpI0rTI_0_jqjhYx5rdnUe9t-p3__ecGWm-iS3w-E4dNtGSKLdRpNzfgRpG30e2lm5frVl0ZjUuwGi9NOyZ2eVlsxfR58o6LUpv6DFelnNYTLEYAzUezU-MCPwGAraSbKozBKCmzgx76V_cX10GzXSFQEShpQI0RjEY6soIzE2eSZ5FNqEwiyaiUPE040dzymMmQS6uUscQSCFdk7HJFJtlFy0VZmD2Es1BTTQkVRCYAEKmAMCQ0WkitBWE266KTlsn562yIRj4fl-zZlQO7cs-uPOyiXnsPeaNQdQ5xX-r3ZQGx05bvi8-_U9v_2_EDtBa7q_NVZD20PKmm5hCtqrfJuK6OvKB9AEqnzdE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBb1Yn1itmoM3Dewj-_ImaqlYi2iV3pZkk9SC7sruVvDfO0l3WxU96HlDWCaZme9LMvMhdOS5Hk0g1RAZMiAojAkCu0SRJFSJKy3lUK6M2ETQ74fDYXRbFYUV9Wv3-krSROpZsZs-wQTq63gEMHzgESDqi1TL7GiOfv_4qRrSCHECb9Fveqhblcr8PMfXdDTHmN-uRU226TT_959raLVCl_hsuh3W0YJMN1CzVm7AlSNvorsL3S9XS11JgTOIGi9VOSbW57JYsclz-Y7TTMjiFOcZnxQlZiOg5qPpqHGKn4DA5lx3FcYQlBK5hR46l4PzLqnUFUhig5MSX0oW-rawFYtC6QQ8Cmzl-ty1eehzHnluREWkIifkVsRVkkhFFQW4wh19ViTdbdRIs1TuIBxYwhc-9RnlLhBEnwEMsaRgXAhGQxW00HFt5Ph12kQjnrVLNuaKwVyxMVdstVC7Xoe4cqgiBtznGb0smOyktvv88--z7f5t-CFa7g5uenHvqn-9h1YcvYzmRVkbNcp8IvfRUvJWjov8wGy6D_oV0LU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ERbxYn1itugdvGprH5uVNrEVRSqkPegu72d1a0KQkqeC_d3aTtFX0IJ6zDGEeO_PNzgOhU9dxSQyuxhABBYBCKTdAS6QRBzJ2hCltwqReNuH3esFwGPYXuvh1tXv9JFn2NKgpTUnRnnDZnjW-qWwmwGDbNSCe910DQPsKASSjiroGD88LnZF6KSdgGFXfQ5yqbeZnGl9d0zze_PZEqj1Pt_H_f95EG1XUiS9LNdlCSyLZRo16owOuDHwHDTpqjq5agSU4TuE2eavaNLHK12JJp6_FB05SLvILnKVsmheYjgCyj8pT4wS_ALDNmJo2jOGyisUueupeP17dGNXWBSO2wHgNTwgaeBa3JA0DYfss9C3peMyxWOAxFrpOSHgoQztgZshkHAtJJIEwhtkqhyScPbScpInYR9g3ucc94lHCHACOHoXwxBScMs4pCaTfRGc1w6NJOVwjmo1R1uyKgF2RZldkNlGrlklUGVoeQTzo6j1aQOy8lsH88-_UDv52_ASt9Tvd6P62d3eI1m0lRV1o1kLLRTYVR2g1fi_GeXas9e8TrI_ZmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+optimization+with+faulty+nodes%3A+robust+aggregation+in+hyperbolic+space&rft.jtitle=Neural+computing+%26+applications&rft.au=Ghosh%2C+Subhas+Kumar&rft.au=Vittamsetti%2C+Vijay+Monic&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=26&rft.spage=21563&rft.epage=21605&rft_id=info:doi/10.1007%2Fs00521-025-11475-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon