A comprehensive review on encoder–decoder architectures in ECG signal compression and denoising: opportunities, challenges, and prospects

Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources...

Full description

Saved in:
Bibliographic Details
Published in:Research on biomedical engineering Vol. 41; no. 4; p. 57
Main Authors: Das, Maumita, Sahana, Bikash Chandra
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Subjects:
ISSN:2446-4732, 2446-4740
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising. Methods Numerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article. Results It has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices. Conclusion This paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions.
AbstractList PurposeCardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising.MethodsNumerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article.ResultsIt has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices.ConclusionThis paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions.
Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising. Methods Numerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article. Results It has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices. Conclusion This paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions.
ArticleNumber 57
Author Sahana, Bikash Chandra
Das, Maumita
Author_xml – sequence: 1
  givenname: Maumita
  orcidid: 0000-0002-2740-4211
  surname: Das
  fullname: Das, Maumita
  email: maumita.ec18@nitp.ac.in
  organization: Department of Electronics and Communication Engineering, Institute of Engineering and Management (IEM), University of Engineering and Management Kolkata, New Town
– sequence: 2
  givenname: Bikash Chandra
  orcidid: 0000-0002-0369-7718
  surname: Sahana
  fullname: Sahana, Bikash Chandra
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Patna, Ashok Rajpath
BookMark eNp9kLtOAzEQRS0EEhD4ASpLtCyMH_sIHYrCQ0KigdpyvOPEKLEXexNER0_JH_IlOCSCjmpuce-ZmXtIdn3wSMgJg3MGUF8kySuAAnhZAEhRFbBDDriUVSFrCbu_WvB9cpySm4CUddkIzg_IxxU1YdFFnKFPboU04srhKw2eojehxfj1_tnij6I6mpnr0fTLiIk6T8ejG5rc1Ov5lpLpOal9S1v0wSXnp5c0dF2I_dK73mE6o2am53P007VeO7sYUpeh6YjsWT1PeLydA_J0PX4c3Rb3Dzd3o6v7wrCmhkJMLJZSSy1K5GxibG2qxpqhgMbWJdesNiVoDQxr2-KwGRrGrBgKRFMZtCgG5HTDzZtflph69RyWMT-RlOAVqzgrucguvnGZfF-KaFUX3ULHN8VArXtXm95V7l399K4gh8QmlLI5vxj_0P-kvgHepovF
Cites_doi 10.1515/cdbme-2022-1042
10.1109/TASLP.2019.2917232
10.17303/jber.2019.3.101
10.1016/j.bspc.2013.05.001
10.1109/ACCESS.2018.2864675
10.1109/INISTA52262.2021.9548524
10.1049/iet-spr.2014.0005
10.3390/bios12070475
10.1016/j.cogsys.2018.07.004
10.1109/CIC.2005.1588283
10.1016/j.jelectrocard.2023.05.004
10.1109/ICICyTA57421.2022.10037967
10.1161/CIR.0000000000001123
10.1109/IECBES.2014.7047605
10.23919/APSIPAASC55919.2022.9980058
10.1007/s11831-023-10047-6
10.1016/j.bspc.2021.103275
10.1109/NCC.2016.7561206
10.1007/978-3-030-02819-0
10.1109/JBHI.2024.3355960
10.1016/j.sigpro.2010.07.002
10.1007/s13246-016-0510-6
10.1109/CONIT55038.2022.9847756
10.1109/JSEN.2016.2564995
10.1016/j.bspc.2021.102830
10.3844/ajassp.2008.276.281
10.1109/ACCESS.2021.3072640
10.1016/j.cmpb.2019.03.019
10.1088/1361-6579/ab69b9
10.1080/03772063.2020.1756473
10.48550/arXiv.1906.00446
10.3390/app12146957
10.1080/03772063.2024.2410428
10.1049/htl.2016.0077
10.1016/j.engappai.2023.106484
10.1109/JBHI.2017.2706298
10.1109/10.563294
10.1109/JBHI.2020.2982935
10.1109/JBHI.2018.2794362
10.1109/ACCESS.2019.2912036
10.1109/JSEN.2022.3213586
10.1590/2446-4740.01817
10.1080/03772063.2019.1575292
10.5603/CJ.2012.0039
10.1016/j.compbiomed.2023.107553
10.1109/JBHI.2016.2582340
10.1007/s10470-023-02200-9
10.48084/etasr.4302
10.1109/SPIN.2015.7095425
10.1016/j.bspc.2017.09.020
10.1016/j.bbe.2016.04.001
10.1109/TBME.2007.902234
10.1088/0967-3334/37/12/2214
10.1109/TIM.2022.3197757
10.1016/j.bspc.2023.104964
10.18280/ria.370602
10.1038/nature14539
10.1515/cdbme-2022-1166
10.1016/j.bspc.2023.105242
10.1109/TCBB.2020.2976981
10.23919/EUSIPCO.2019.8902833
10.1109/LSP.2015.2476667
10.7763/IJIEE.2011.V1.33
10.1016/j.bspc.2020.102225
10.1109/TPAMI.2013.50
10.3103/S0146411618060044
10.1136/bmj.n71
10.1016/j.engappai.2016.02.015
10.1049/htl.2014.0073
10.1016/j.bspc.2021.102903
10.1007/s42600-020-00075-7
10.1007/s00246-023-03273-z
10.1109/TBCAS.2014.2359053
10.3390/electronics12071606
10.1109/ICIEM51511.2021.9445297
10.1016/j.compbiomed.2023.107835
10.1142/S0218126621500614
10.1016/j.bspc.2021.102751
10.1109/TBME.2007.897817
10.1109/ACCESS.2022.3206620
10.1088/1741-2560/11/2/026017
10.1109/TIM.2023.3251408
10.1016/j.bspc.2023.105504
10.18280/ts.370116
10.1007/s13246-018-0623-1
10.1109/PerComWorkshops53856.2022.9767313
10.1007/s40747-020-00188-7
10.14445/22315381/IJETT-V71I2P240
10.1109/JBHI.2017.2753321
10.1109/ACCESS.2022.3178847
10.18495/comengapp.v13i2.482
10.1007/s40031-022-00796-6
10.1080/03772063.2022.2135622
10.1109/10.477707
10.2139/ssrn.4787032
10.1109/TBME.2008.921150
10.1166/jmihi.2015.1649
10.1016/j.bspc.2021.103344
10.1109/JBHI.2022.3169325
10.1016/j.protcy.2016.08.137
10.1016/j.engappai.2018.12.004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025.
DBID AAYXX
CITATION
DOI 10.1007/s42600-025-00436-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2446-4740
ExternalDocumentID 10_1007_s42600_025_00436_0
GroupedDBID 0R~
406
5VS
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABRTQ
ABTEG
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADBBV
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
APOWU
ATHPR
AXYYD
AYFIA
AZFZN
CSCUP
DPUIP
EBLON
EBS
FFXSO
FIGPU
FNLPD
GGCAI
IAO
IKXTQ
IWAJR
JZLTJ
KOV
KQ8
LLZTM
NPVJJ
NQJWS
PT4
ROL
RSV
SCD
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABJCF
AFFHD
AFKRA
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CITATION
EJD
HCIFZ
IHR
INH
IPNFZ
ISR
ITC
M4Y
M7P
M7S
NU0
PHGZM
PHGZT
PQGLB
PTHSS
RIG
RSC
ID FETCH-LOGICAL-c1870-3bfe54a4a35e21bcf7c68fc9308f752a17c50aa01e7fde989c11f393eec6cefe3
IEDL.DBID RSV
ISSN 2446-4732
IngestDate Sat Oct 18 23:22:37 EDT 2025
Sat Nov 29 07:02:57 EST 2025
Thu Oct 16 01:19:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning models
Detection
Autoencoder
Data preprocessing
Electrocardiogram
Denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1870-3bfe54a4a35e21bcf7c68fc9308f752a17c50aa01e7fde989c11f393eec6cefe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2740-4211
0000-0002-0369-7718
PQID 3261621523
PQPubID 7435735
ParticipantIDs proquest_journals_3261621523
crossref_primary_10_1007_s42600_025_00436_0
springer_journals_10_1007_s42600_025_00436_0
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Rio de Janeiro
PublicationTitle Research on biomedical engineering
PublicationTitleAbbrev Res. Biomed. Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References P Bing (436_CR10) 2021; 9
436_CR69
436_CR67
436_CR62
436_CR2
O Sayadi (436_CR90) 2008; 55
436_CR4
436_CR64
436_CR6
436_CR63
R Ranjan (436_CR78) 2024; 31
D Del Testa (436_CR21) 2015; 22
A Rasti-Meymandi (436_CR79) 2022; 71
M Roy (436_CR82) 2023; 124
S Lahmiri (436_CR53) 2014; 1
O Yildirim (436_CR112) 2018; 52
P Lander (436_CR54) 1997; 44
W Mohguen (436_CR68) 2021; 11
T Torfs (436_CR98) 2014; 8
436_CR73
H Lin (436_CR58) 2023
436_CR71
436_CR70
436_CR75
P Singh (436_CR93) 2022; 71
V Gupta (436_CR28) 2022; 68
NK Muhsin (436_CR72) 2011; 7
436_CR74
Y Xia (436_CR104) 2023; 80
HD Hesar (436_CR33) 2017; 21
Y LeCun (436_CR55) 2015; 521
MS Chavan (436_CR12) 2005; 4
YS Jhang (436_CR47) 2022; 10
Z Wang (436_CR103) 2019
Y Hou (436_CR39) 2023; 72
436_CR100
M Das (436_CR18) 2020; 37
U Satija (436_CR89) 2017; 4
M Chen (436_CR13) 2024; 28
SK Yadav (436_CR110) 2015; 9
S Yadav (436_CR111) 2021; 69
PS Hamilton (436_CR29) 1996; 43
436_CR88
436_CR86
V Gupta (436_CR26) 2021; 67
436_CR80
HD Hesar (436_CR34) 2017; 21
M Sraitih (436_CR96) 2021; 69
436_CR15
F Wang (436_CR101) 2019; 175
436_CR19
MH Sheu (436_CR91) 2022; 10
H Ghonchi (436_CR24) 2022; 22
SS AQ Lobodzinski (436_CR60) 2007; 19
436_CR11
S Gaamouri (436_CR23) 2018; 52
436_CR99
S Jain (436_CR44) 2018; 22
HY Mir (436_CR66) 2024; 118
F Xiong (436_CR106) 2023; 9
MR Keshtkaran (436_CR49) 2014
A Harkat (436_CR31) 2021
R Sameni (436_CR85) 2005; 32
O Singh (436_CR94) 2017; 40
K Yu (436_CR113) 2024; 169
PC Bhaskar (436_CR9) 2016; 25
M Das (436_CR16) 2022
436_CR22
P Xiong (436_CR108) 2016; 37
HT Chiang (436_CR14) 2019; 7
Y Hou (436_CR37) 2023; 84
MZU Rahman (436_CR76) 2011; 91
A Azzouz (436_CR3) 2023; 37
X Wang (436_CR102) 2022; 26
HD Hesar (436_CR35) 2019; 23
HD Hesar (436_CR36) 2021; 25
M Rakshit (436_CR77) 2018; 40
F Samann (436_CR84) 2023; 166
436_CR38
Y Bengio (436_CR8) 2013; 35
L Hu (436_CR41) 2024; 88
436_CR32
BR de Oliveira (436_CR20) 2018; 34
A Rifai (436_CR81) 2024; 13
P Xiong (436_CR107) 2015; 5
E Spanò (436_CR95) 2016; 16
M Suchetha (436_CR97) 2013; 8
YS Jhang (436_CR46) 2022
B Liu (436_CR59) 2021; 68
436_CR43
U Lomoio (436_CR61) 2024; 160
V Gupta (436_CR27) 2022
Y Xia (436_CR105) 2023; 80
M Bahaz (436_CR5) 2018; 41
M Alfaouri (436_CR1) 2008; 5
436_CR114
Y Li (436_CR56) 2022; 72
436_CR115
B Marwan (436_CR65) 2022; 8
M Das (436_CR17) 2024
P Singh (436_CR92) 2021; 18
H Huang (436_CR42) 2023; 44
F Samann (436_CR83) 2022; 8
H Hao (436_CR30) 2019; 79
436_CR51
436_CR50
W Jenkal (436_CR45) 2016; 36
P Xiong (436_CR109) 2016; 52
436_CR52
436_CR7
PS Gokhale (436_CR25) 2012; 2
H Kameoka (436_CR48) 2019; 27
I Houamed (436_CR40) 2020; 36
YD Lin (436_CR57) 2008; 55
R Sameni (436_CR87) 2007; 54
References_xml – volume: 8
  start-page: 161
  issue: 2
  year: 2022
  ident: 436_CR83
  publication-title: Curr Dir Biomed Eng
  doi: 10.1515/cdbme-2022-1042
– volume: 27
  start-page: 1432
  issue: 9
  year: 2019
  ident: 436_CR48
  publication-title: IEEE ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2019.2917232
– ident: 436_CR51
  doi: 10.17303/jber.2019.3.101
– volume: 8
  start-page: 575
  issue: 6
  year: 2013
  ident: 436_CR97
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.05.001
– ident: 436_CR7
  doi: 10.1109/ACCESS.2018.2864675
– ident: 436_CR22
  doi: 10.1109/INISTA52262.2021.9548524
– volume: 9
  start-page: 88
  issue: 1
  year: 2015
  ident: 436_CR110
  publication-title: IET Signal Processing
  doi: 10.1049/iet-spr.2014.0005
– ident: 436_CR114
  doi: 10.3390/bios12070475
– volume: 52
  start-page: 198
  year: 2018
  ident: 436_CR112
  publication-title: Cogn. Syst. Res
  doi: 10.1016/j.cogsys.2018.07.004
– ident: 436_CR86
  doi: 10.1109/CIC.2005.1588283
– volume: 80
  start-page: 81
  year: 2023
  ident: 436_CR105
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2023.05.004
– ident: 436_CR64
  doi: 10.1109/ICICyTA57421.2022.10037967
– ident: 436_CR99
  doi: 10.1161/CIR.0000000000001123
– ident: 436_CR32
  doi: 10.1109/IECBES.2014.7047605
– ident: 436_CR67
  doi: 10.23919/APSIPAASC55919.2022.9980058
– volume: 31
  start-page: 2345
  issue: 4
  year: 2024
  ident: 436_CR78
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-10047-6
– volume: 71
  year: 2022
  ident: 436_CR79
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103275
– ident: 436_CR71
  doi: 10.1109/NCC.2016.7561206
– year: 2019
  ident: 436_CR103
  publication-title: Springer International Publishing
  doi: 10.1007/978-3-030-02819-0
– volume: 28
  start-page: 1993
  issue: 4
  year: 2024
  ident: 436_CR13
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2024.3355960
– volume: 91
  start-page: 225
  issue: 2
  year: 2011
  ident: 436_CR76
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.07.002
– volume: 40
  start-page: 219
  issue: 1
  year: 2017
  ident: 436_CR94
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-016-0510-6
– ident: 436_CR52
  doi: 10.1109/CONIT55038.2022.9847756
– volume: 16
  start-page: 5452
  issue: 13
  year: 2016
  ident: 436_CR95
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2564995
– volume: 69
  start-page: 1
  year: 2021
  ident: 436_CR111
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102830
– ident: 436_CR73
– volume: 5
  start-page: 276
  issue: 3
  year: 2008
  ident: 436_CR1
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2008.276.281
– volume: 9
  start-page: 56699
  year: 2021
  ident: 436_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072640
– volume: 175
  start-page: 139
  year: 2019
  ident: 436_CR101
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.03.019
– ident: 436_CR115
  doi: 10.1088/1361-6579/ab69b9
– volume: 68
  start-page: 3267
  issue: 5
  year: 2022
  ident: 436_CR28
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1756473
– ident: 436_CR80
  doi: 10.48550/arXiv.1906.00446
– year: 2022
  ident: 436_CR46
  publication-title: Appl Sci
  doi: 10.3390/app12146957
– year: 2024
  ident: 436_CR17
  publication-title: IETE J Res
  doi: 10.1080/03772063.2024.2410428
– volume: 4
  start-page: 2
  issue: 1
  year: 2017
  ident: 436_CR89
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl.2016.0077
– volume: 124
  start-page: 1
  year: 2023
  ident: 436_CR82
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106484
– volume: 21
  start-page: 1581
  issue: 6
  year: 2017
  ident: 436_CR33
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2706298
– volume: 44
  start-page: 247
  issue: 4
  year: 1997
  ident: 436_CR54
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.563294
– volume: 25
  start-page: 13
  issue: 1
  year: 2021
  ident: 436_CR36
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2982935
– volume: 23
  start-page: 112
  issue: 1
  year: 2019
  ident: 436_CR35
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2794362
– volume: 7
  start-page: 60806
  year: 2019
  ident: 436_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912036
– volume: 22
  start-page: 22908
  issue: 23
  year: 2022
  ident: 436_CR24
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3213586
– volume: 34
  start-page: 73
  issue: 1
  year: 2018
  ident: 436_CR20
  publication-title: Research on Biomedical Engineering
  doi: 10.1590/2446-4740.01817
– volume: 67
  start-page: 921
  issue: 6
  year: 2021
  ident: 436_CR26
  publication-title: IETE J Res
  doi: 10.1080/03772063.2019.1575292
– volume: 19
  start-page: 210
  issue: 2
  year: 2007
  ident: 436_CR60
  publication-title: Cardiol J
  doi: 10.5603/CJ.2012.0039
– volume: 166
  start-page: 1
  year: 2023
  ident: 436_CR84
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107553
– volume: 21
  start-page: 635
  issue: 3
  year: 2017
  ident: 436_CR34
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2582340
– volume: 118
  start-page: 317
  issue: 2
  year: 2024
  ident: 436_CR66
  publication-title: Analog Integr Circ Signal Process
  doi: 10.1007/s10470-023-02200-9
– volume: 11
  start-page: 7536
  issue: 5
  year: 2021
  ident: 436_CR68
  publication-title: Eng Technol Appl Sci Res
  doi: 10.48084/etasr.4302
– ident: 436_CR88
  doi: 10.1109/SPIN.2015.7095425
– volume: 40
  start-page: 140
  year: 2018
  ident: 436_CR77
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.09.020
– volume: 36
  start-page: 499
  issue: 3
  year: 2016
  ident: 436_CR45
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2016.04.001
– volume: 55
  start-page: 354
  issue: 1
  year: 2008
  ident: 436_CR57
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.902234
– volume: 80
  start-page: 81
  year: 2023
  ident: 436_CR104
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2023.05.004
– volume: 37
  start-page: 2214
  issue: 12
  year: 2016
  ident: 436_CR108
  publication-title: Physiol. Meas
  doi: 10.1088/0967-3334/37/12/2214
– volume: 71
  start-page: 1
  year: 2022
  ident: 436_CR93
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3197757
– volume: 84
  start-page: 1
  year: 2023
  ident: 436_CR37
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104964
– volume: 37
  start-page: 1387
  issue: 6
  year: 2023
  ident: 436_CR3
  publication-title: Rev Intell Artif
  doi: 10.18280/ria.370602
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 436_CR55
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 652
  issue: 2
  year: 2022
  ident: 436_CR65
  publication-title: Curr Dir Biomed Eng
  doi: 10.1515/cdbme-2022-1166
– ident: 436_CR11
– ident: 436_CR15
  doi: 10.1016/j.bspc.2023.105242
– volume: 18
  start-page: 759
  issue: 2
  year: 2021
  ident: 436_CR92
  publication-title: IEEE ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2020.2976981
– ident: 436_CR63
– ident: 436_CR2
  doi: 10.23919/EUSIPCO.2019.8902833
– volume: 22
  start-page: 2304
  issue: 12
  year: 2015
  ident: 436_CR21
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2476667
– ident: 436_CR50
  doi: 10.7763/IJIEE.2011.V1.33
– ident: 436_CR19
  doi: 10.1016/j.bspc.2020.102225
– ident: 436_CR43
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 436_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume: 52
  start-page: 528
  issue: 6
  year: 2018
  ident: 436_CR23
  publication-title: Autom Control Comput Sci
  doi: 10.3103/S0146411618060044
– ident: 436_CR74
  doi: 10.1136/bmj.n71
– volume: 52
  start-page: 194
  year: 2016
  ident: 436_CR109
  publication-title: Eng. Appl. Artif. Intell
  doi: 10.1016/j.engappai.2016.02.015
– volume: 1
  start-page: 104
  issue: 3
  year: 2014
  ident: 436_CR53
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl.2014.0073
– volume: 69
  start-page: 1
  year: 2021
  ident: 436_CR96
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102903
– volume: 36
  start-page: 349
  issue: 3
  year: 2020
  ident: 436_CR40
  publication-title: Research on Biomedical Engineering
  doi: 10.1007/s42600-020-00075-7
– volume: 44
  start-page: 1726
  issue: 8
  year: 2023
  ident: 436_CR42
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-023-03273-z
– volume: 8
  start-page: 617
  issue: 5
  year: 2014
  ident: 436_CR98
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2014.2359053
– year: 2023
  ident: 436_CR58
  publication-title: Electronics
  doi: 10.3390/electronics12071606
– ident: 436_CR62
  doi: 10.1109/ICIEM51511.2021.9445297
– ident: 436_CR100
– volume: 169
  start-page: 1
  year: 2024
  ident: 436_CR113
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2023.107835
– year: 2021
  ident: 436_CR31
  publication-title: J Circuits Syst Comput
  doi: 10.1142/S0218126621500614
– volume: 68
  start-page: 1
  year: 2021
  ident: 436_CR59
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102751
– volume: 54
  start-page: 2172
  issue: 12
  year: 2007
  ident: 436_CR87
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.897817
– volume: 10
  start-page: 98104
  year: 2022
  ident: 436_CR91
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3206620
– volume: 4
  start-page: 1260
  issue: 10
  year: 2005
  ident: 436_CR12
  publication-title: WSEAS Trans Circuits Syst
– year: 2014
  ident: 436_CR49
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/11/2/026017
– volume: 72
  start-page: 1
  year: 2023
  ident: 436_CR39
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3251408
– ident: 436_CR38
  doi: 10.1016/j.bspc.2023.104964
– volume: 88
  start-page: 1
  year: 2024
  ident: 436_CR41
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105504
– volume: 37
  start-page: 119
  issue: 1
  year: 2020
  ident: 436_CR18
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.370116
– volume: 41
  start-page: 143
  issue: 1
  year: 2018
  ident: 436_CR5
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-018-0623-1
– ident: 436_CR6
  doi: 10.1109/PerComWorkshops53856.2022.9767313
– volume: 9
  start-page: 2555
  issue: 3
  year: 2023
  ident: 436_CR106
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00188-7
– ident: 436_CR4
  doi: 10.14445/22315381/IJETT-V71I2P240
– volume: 22
  start-page: 1133
  issue: 4
  year: 2018
  ident: 436_CR44
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2753321
– volume: 10
  start-page: 57555
  year: 2022
  ident: 436_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3178847
– ident: 436_CR70
– volume: 13
  start-page: 60
  issue: 2
  year: 2024
  ident: 436_CR81
  publication-title: Computer Engineering and Applications Journal
  doi: 10.18495/comengapp.v13i2.482
– year: 2022
  ident: 436_CR16
  publication-title: Journal of the Institution of Engineers (India): Series B
  doi: 10.1007/s40031-022-00796-6
– year: 2022
  ident: 436_CR27
  publication-title: IETE J Res
  doi: 10.1080/03772063.2022.2135622
– volume: 43
  start-page: 105
  issue: 1
  year: 1996
  ident: 436_CR29
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.477707
– volume: 160
  start-page: 1
  year: 2024
  ident: 436_CR61
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.4787032
– volume: 55
  start-page: 2240
  issue: 9
  year: 2008
  ident: 436_CR90
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.921150
– volume: 5
  start-page: 1804
  issue: 8
  year: 2015
  ident: 436_CR107
  publication-title: J. Med. Imaging Health Infor.
  doi: 10.1166/jmihi.2015.1649
– volume: 2
  start-page: 81
  issue: 5
  year: 2012
  ident: 436_CR25
  publication-title: Int J Emerg Technol Adv Eng
– volume: 72
  year: 2022
  ident: 436_CR56
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103344
– volume: 7
  start-page: 13
  issue: 1
  year: 2011
  ident: 436_CR72
  publication-title: Al-Khwarizmi Eng J
– volume: 26
  start-page: 2929
  issue: 7
  year: 2022
  ident: 436_CR102
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2022.3169325
– volume: 32
  start-page: 1017
  year: 2005
  ident: 436_CR85
  publication-title: Comput Cardiol
  doi: 10.1109/CIC.2005.1588283
– ident: 436_CR69
– volume: 25
  start-page: 497
  year: 2016
  ident: 436_CR9
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.08.137
– ident: 436_CR75
– volume: 79
  start-page: 34
  year: 2019
  ident: 436_CR30
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.12.004
SSID ssib044758322
ssj0001671981
Score 2.3111298
SecondaryResourceType review_article
Snippet Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts....
PurposeCardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 57
SubjectTerms Algorithms
Artificial neural networks
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Cardiovascular diseases
Coders
Comparative analysis
Comparative studies
Compression
Deep learning
EKG
Electrocardiography
Energy resources
Energy sources
Engineering
Flexibility
Fourier transforms
Generative adversarial networks
Heart
Mathematical models
Memory devices
Neural networks
Noise
Noise reduction
Noise sensitivity
Peripheral equipment (computers)
Portable equipment
Real time
Review
Signal processing
Signal transmission
Surveys
Telemetry
Wavelet transforms
Wearable technology
Title A comprehensive review on encoder–decoder architectures in ECG signal compression and denoising: opportunities, challenges, and prospects
URI https://link.springer.com/article/10.1007/s42600-025-00436-0
https://www.proquest.com/docview/3261621523
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2446-4740
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044758322
  issn: 2446-4732
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2446-4740
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001671981
  issn: 2446-4732
  databaseCode: RSV
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EolQc2aimJE9thq6oWBqgQj6pblPghuiRV0zIidkb-Ib8E20nagmCAzVIsJ7k7--58d98BcCZ4wEJFJQpZ6CFf-AwlWGEUSI97ccAEtQCmg2va77PhMLwti8LyKtu9Cknak3pe7Gax1JFpv2px05F21Ne0umNmO97dDyopMgh2RkwXNy2Eas_aeF5alRHkU-yV1TM_L_tVQy3Mzm-RUquAetv_-_QdsFUanLBdSMguWJHpHthcgiHcB29taDLLJ_KpyGaHRT0LzFJoYC6FnHy8vgtpR3A58pDDUQq7nUtoskD0S4pVTF5tCuNUQH2mZSNzGXEBs7Ex9GepBXBtQV71cNFjM1P_v635zA_AY6_70LlCZZMGxF291xFOlAz82I-xZq-bcEU5YYqH2GGKBl7sUh44cey4kiohtURw11U4xFJywqWS-BDU0iyVRwASQgURgiauJ3yeSCa0NegQjhOh7UTi1cF5xZhoXGBxRHPUZUviSJM4siSOnDpoVLyLyn2ZR9pYdYlp5YvroFXxavH499WO_zb9BGx4ht0276UBatPJTJ6Cdf48HeWTJli9eek2rdR-AvE054U
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQQQIG3ohCAQ9s1FISJ3bCVlUtRZQKQam6RYkfoktSNS0zOyP_kF-C7SRtQTDAZimWk9ydfWf7u-8AuODM8wNJBQr8wEEud30UY4mRJxzmRJ7PqSEwHXRpr-cPh8F9kRSWlWj38krSrNTzZDfDpY50-VXDm47URn3VVR5LA_keHgelFWkGO22mi5MWQtXOWu-8lCsjyKXYKbJnfh72q4dahJ3fbkqNA2pv_-_Td8BWEXDCRm4hu2BFJHtgc4mGcB-8NaBGlk_Ec45mh3k-C0wTqGkuuZh8vL5zYVpw-eYhg6MEtprXUKNA1EvyUTSuNoFRwqFa09KRPoy4gulYB_qzxBC41iEra7iotu6p_t_kfGYH4Knd6jc7qCjSgJit5jrCsRSeG7kRVuq1YyYpI75kAbZ8ST0nsinzrCiybEElF8oimG1LHGAhGGFCCnwIKkmaiCMACaGccE5j2-Eui4XPVTRoEYZjruJE4lTBZamYcJxzcYRz1mUj4lCJODQiDq0qqJW6C4t5mYUqWLWJLuWLq6Be6mrx-PfRjv_W_Rysd_p33bB707s9ARuOVr3BwNRAZTqZiVOwxl6mo2xyZmz3E1vZ6Tg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQQQgG3ohCAQ9s1GoSJ3bCVpUWEFVVCai6RYkfootT9cHMzsg_5JdgO01bEAyIzVKsi3J38d357r4D4IKzIIwkFSgKIw_53A9RiiVGgfCYlwQhpxbAtNemnU7Y70fdpS5-W-1epCTzngaD0qQmtSGXtXnjm8VVR2YUq8VQRzpoX_XN0CATrz_0Co0yaHZGZRe3LoTqKNtEYdqsEeRT7M06aX4m-9VaLVzQb1lTa4xa2___jB2wNXNEYT3XnF2wItQe2FyCJ9wHb3VoKs5H4jmvcod5nwvMFDTwl1yMPl7fubAruJyRGMOBgs3GDTTVIfolORVTb6tgojjUZ102MJcUVzAbmgBgqiywaxWyYraLXpudmhe2F3R8AJ5azcfGLZoNb0DM1WcAwqkUgZ_4CdZid1MmKSOhZBF2QkkDL3EpC5wkcVxBJRdaU5jrShxhIRhhQgp8CEoqU-IIQEIoJ5zT1PW4z1IRcu0lOoThlGv_kXhlcFkIKR7mGB3xHI3ZsjjWLI4ti2OnDCqFHOPZ_zqOtRPrEjPiF5dBtZDb4vHv1I7_tv0crHevW3H7rnN_AjY8I3lbGlMBpcloKk7BGnuZDMajM6vGn1cf8hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+encoder%E2%80%93decoder+architectures+in+ECG+signal+compression+and+denoising%3A+opportunities%2C+challenges%2C+and+prospects&rft.jtitle=Research+on+biomedical+engineering&rft.au=Das%2C+Maumita&rft.au=Sahana%2C+Bikash+Chandra&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2446-4732&rft.eissn=2446-4740&rft.volume=41&rft.issue=4&rft.spage=57&rft_id=info:doi/10.1007%2Fs42600-025-00436-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2446-4732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2446-4732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2446-4732&client=summon