A comprehensive review on encoder–decoder architectures in ECG signal compression and denoising: opportunities, challenges, and prospects
Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources...
Saved in:
| Published in: | Research on biomedical engineering Vol. 41; no. 4; p. 57 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2446-4732, 2446-4740 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising.
Methods
Numerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article.
Results
It has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices.
Conclusion
This paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions. |
|---|---|
| AbstractList | PurposeCardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising.MethodsNumerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article.ResultsIt has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices.ConclusionThis paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions. Purpose Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts. Furthermore, with ubiquitous long-term monitoring technology, portable, lightweight wearable devices have limited memory and energy resources, as well as high signal transmission costs. Therefore, the signal must be denoised and compressed before it is transmitted to the clinic. For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE) architecture is quite popular. This article examines the utilization of learning-based DAE techniques in ECG signal denoising and compression. It also emphasizes the potential of these algorithms to mitigate various ECG noises while minimizing overall system complexity and computation time. This survey aims to identify the most effective strategies based on comparative studies on the state-of-the-art encoder–decoder architectures for ECG signal compression and denoising. Methods Numerous researchers have developed a variety of efficient DAE algorithms for portable, lightweight peripheral devices. Some of the most frequently used DAE architectures are the convolutional denoising autoencoder (CDAE), variational denoising autoencoder, stacked denoising autoencoder, adversarial denoising autoencoder, and hybrid DAE. The operating principle, advantages, and disadvantages of each architecture are explained in this article. Results It has been observed that the powerful nonlinear mapping capabilities of the DAEs allow them to provide a high compression rate together with improved filtering capabilities. The comparative analysis of the recent research indicates that approximately 65% of the literature uses CDAE-based ECG denoising architecture. The inclusion of skip connections and attention modules in CDAE can improve its performance by reducing training time and enhancing denoising ability. Additionally, the conditional generative adversarial network and adversarial denoising convolutional neural network show comparatively higher SNR with lower RMSE for denoising the ECG signal. However, the U-Net DAE architecture exhibits better denoising performance with fewer parameter requirements compared to other DAE techniques. Moreover, it provides a low-power, lightweight architecture that is simple to implement on mobile devices. Furthermore, the hybrid DAE model is a remarkably efficient and high-speed option, making it especially suitable for edge devices. Conclusion This paper surveys various research on ECG signal compression and noise reduction systems. It discusses the step-by-step framework of DAE architectures and presents a comparative study on their performance to suppress different ECG noises and artifacts. This study also covers corresponding challenges, limitations, and future directions. |
| ArticleNumber | 57 |
| Author | Sahana, Bikash Chandra Das, Maumita |
| Author_xml | – sequence: 1 givenname: Maumita orcidid: 0000-0002-2740-4211 surname: Das fullname: Das, Maumita email: maumita.ec18@nitp.ac.in organization: Department of Electronics and Communication Engineering, Institute of Engineering and Management (IEM), University of Engineering and Management Kolkata, New Town – sequence: 2 givenname: Bikash Chandra orcidid: 0000-0002-0369-7718 surname: Sahana fullname: Sahana, Bikash Chandra organization: Department of Electronics and Communication Engineering, National Institute of Technology Patna, Ashok Rajpath |
| BookMark | eNp9kLtOAzEQRS0EEhD4ASpLtCyMH_sIHYrCQ0KigdpyvOPEKLEXexNER0_JH_IlOCSCjmpuce-ZmXtIdn3wSMgJg3MGUF8kySuAAnhZAEhRFbBDDriUVSFrCbu_WvB9cpySm4CUddkIzg_IxxU1YdFFnKFPboU04srhKw2eojehxfj1_tnij6I6mpnr0fTLiIk6T8ejG5rc1Ov5lpLpOal9S1v0wSXnp5c0dF2I_dK73mE6o2am53P007VeO7sYUpeh6YjsWT1PeLydA_J0PX4c3Rb3Dzd3o6v7wrCmhkJMLJZSSy1K5GxibG2qxpqhgMbWJdesNiVoDQxr2-KwGRrGrBgKRFMZtCgG5HTDzZtflph69RyWMT-RlOAVqzgrucguvnGZfF-KaFUX3ULHN8VArXtXm95V7l399K4gh8QmlLI5vxj_0P-kvgHepovF |
| Cites_doi | 10.1515/cdbme-2022-1042 10.1109/TASLP.2019.2917232 10.17303/jber.2019.3.101 10.1016/j.bspc.2013.05.001 10.1109/ACCESS.2018.2864675 10.1109/INISTA52262.2021.9548524 10.1049/iet-spr.2014.0005 10.3390/bios12070475 10.1016/j.cogsys.2018.07.004 10.1109/CIC.2005.1588283 10.1016/j.jelectrocard.2023.05.004 10.1109/ICICyTA57421.2022.10037967 10.1161/CIR.0000000000001123 10.1109/IECBES.2014.7047605 10.23919/APSIPAASC55919.2022.9980058 10.1007/s11831-023-10047-6 10.1016/j.bspc.2021.103275 10.1109/NCC.2016.7561206 10.1007/978-3-030-02819-0 10.1109/JBHI.2024.3355960 10.1016/j.sigpro.2010.07.002 10.1007/s13246-016-0510-6 10.1109/CONIT55038.2022.9847756 10.1109/JSEN.2016.2564995 10.1016/j.bspc.2021.102830 10.3844/ajassp.2008.276.281 10.1109/ACCESS.2021.3072640 10.1016/j.cmpb.2019.03.019 10.1088/1361-6579/ab69b9 10.1080/03772063.2020.1756473 10.48550/arXiv.1906.00446 10.3390/app12146957 10.1080/03772063.2024.2410428 10.1049/htl.2016.0077 10.1016/j.engappai.2023.106484 10.1109/JBHI.2017.2706298 10.1109/10.563294 10.1109/JBHI.2020.2982935 10.1109/JBHI.2018.2794362 10.1109/ACCESS.2019.2912036 10.1109/JSEN.2022.3213586 10.1590/2446-4740.01817 10.1080/03772063.2019.1575292 10.5603/CJ.2012.0039 10.1016/j.compbiomed.2023.107553 10.1109/JBHI.2016.2582340 10.1007/s10470-023-02200-9 10.48084/etasr.4302 10.1109/SPIN.2015.7095425 10.1016/j.bspc.2017.09.020 10.1016/j.bbe.2016.04.001 10.1109/TBME.2007.902234 10.1088/0967-3334/37/12/2214 10.1109/TIM.2022.3197757 10.1016/j.bspc.2023.104964 10.18280/ria.370602 10.1038/nature14539 10.1515/cdbme-2022-1166 10.1016/j.bspc.2023.105242 10.1109/TCBB.2020.2976981 10.23919/EUSIPCO.2019.8902833 10.1109/LSP.2015.2476667 10.7763/IJIEE.2011.V1.33 10.1016/j.bspc.2020.102225 10.1109/TPAMI.2013.50 10.3103/S0146411618060044 10.1136/bmj.n71 10.1016/j.engappai.2016.02.015 10.1049/htl.2014.0073 10.1016/j.bspc.2021.102903 10.1007/s42600-020-00075-7 10.1007/s00246-023-03273-z 10.1109/TBCAS.2014.2359053 10.3390/electronics12071606 10.1109/ICIEM51511.2021.9445297 10.1016/j.compbiomed.2023.107835 10.1142/S0218126621500614 10.1016/j.bspc.2021.102751 10.1109/TBME.2007.897817 10.1109/ACCESS.2022.3206620 10.1088/1741-2560/11/2/026017 10.1109/TIM.2023.3251408 10.1016/j.bspc.2023.105504 10.18280/ts.370116 10.1007/s13246-018-0623-1 10.1109/PerComWorkshops53856.2022.9767313 10.1007/s40747-020-00188-7 10.14445/22315381/IJETT-V71I2P240 10.1109/JBHI.2017.2753321 10.1109/ACCESS.2022.3178847 10.18495/comengapp.v13i2.482 10.1007/s40031-022-00796-6 10.1080/03772063.2022.2135622 10.1109/10.477707 10.2139/ssrn.4787032 10.1109/TBME.2008.921150 10.1166/jmihi.2015.1649 10.1016/j.bspc.2021.103344 10.1109/JBHI.2022.3169325 10.1016/j.protcy.2016.08.137 10.1016/j.engappai.2018.12.004 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s42600-025-00436-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2446-4740 |
| ExternalDocumentID | 10_1007_s42600_025_00436_0 |
| GroupedDBID | 0R~ 406 5VS AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABFTV ABJNI ABKCH ABMQK ABRTQ ABTEG ABTKH ABTMW ABXHO ABXPI ACAOD ACDTI ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADBBV ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AHPBZ AHWEU AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF APOWU ATHPR AXYYD AYFIA AZFZN CSCUP DPUIP EBLON EBS FFXSO FIGPU FNLPD GGCAI IAO IKXTQ IWAJR JZLTJ KOV KQ8 LLZTM NPVJJ NQJWS PT4 ROL RSV SCD SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABJCF AFFHD AFKRA BBNVY BENPR BGLVJ BGNMA BHPHI CCPQU CITATION EJD HCIFZ IHR INH IPNFZ ISR ITC M4Y M7P M7S NU0 PHGZM PHGZT PQGLB PTHSS RIG RSC |
| ID | FETCH-LOGICAL-c1870-3bfe54a4a35e21bcf7c68fc9308f752a17c50aa01e7fde989c11f393eec6cefe3 |
| IEDL.DBID | RSV |
| ISSN | 2446-4732 |
| IngestDate | Sat Oct 18 23:22:37 EDT 2025 Sat Nov 29 07:02:57 EST 2025 Thu Oct 16 01:19:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning models Detection Autoencoder Data preprocessing Electrocardiogram Denoising |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1870-3bfe54a4a35e21bcf7c68fc9308f752a17c50aa01e7fde989c11f393eec6cefe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2740-4211 0000-0002-0369-7718 |
| PQID | 3261621523 |
| PQPubID | 7435735 |
| ParticipantIDs | proquest_journals_3261621523 crossref_primary_10_1007_s42600_025_00436_0 springer_journals_10_1007_s42600_025_00436_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Rio de Janeiro |
| PublicationTitle | Research on biomedical engineering |
| PublicationTitleAbbrev | Res. Biomed. Eng |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | P Bing (436_CR10) 2021; 9 436_CR69 436_CR67 436_CR62 436_CR2 O Sayadi (436_CR90) 2008; 55 436_CR4 436_CR64 436_CR6 436_CR63 R Ranjan (436_CR78) 2024; 31 D Del Testa (436_CR21) 2015; 22 A Rasti-Meymandi (436_CR79) 2022; 71 M Roy (436_CR82) 2023; 124 S Lahmiri (436_CR53) 2014; 1 O Yildirim (436_CR112) 2018; 52 P Lander (436_CR54) 1997; 44 W Mohguen (436_CR68) 2021; 11 T Torfs (436_CR98) 2014; 8 436_CR73 H Lin (436_CR58) 2023 436_CR71 436_CR70 436_CR75 P Singh (436_CR93) 2022; 71 V Gupta (436_CR28) 2022; 68 NK Muhsin (436_CR72) 2011; 7 436_CR74 Y Xia (436_CR104) 2023; 80 HD Hesar (436_CR33) 2017; 21 Y LeCun (436_CR55) 2015; 521 MS Chavan (436_CR12) 2005; 4 YS Jhang (436_CR47) 2022; 10 Z Wang (436_CR103) 2019 Y Hou (436_CR39) 2023; 72 436_CR100 M Das (436_CR18) 2020; 37 U Satija (436_CR89) 2017; 4 M Chen (436_CR13) 2024; 28 SK Yadav (436_CR110) 2015; 9 S Yadav (436_CR111) 2021; 69 PS Hamilton (436_CR29) 1996; 43 436_CR88 436_CR86 V Gupta (436_CR26) 2021; 67 436_CR80 HD Hesar (436_CR34) 2017; 21 M Sraitih (436_CR96) 2021; 69 436_CR15 F Wang (436_CR101) 2019; 175 436_CR19 MH Sheu (436_CR91) 2022; 10 H Ghonchi (436_CR24) 2022; 22 SS AQ Lobodzinski (436_CR60) 2007; 19 436_CR11 S Gaamouri (436_CR23) 2018; 52 436_CR99 S Jain (436_CR44) 2018; 22 HY Mir (436_CR66) 2024; 118 F Xiong (436_CR106) 2023; 9 MR Keshtkaran (436_CR49) 2014 A Harkat (436_CR31) 2021 R Sameni (436_CR85) 2005; 32 O Singh (436_CR94) 2017; 40 K Yu (436_CR113) 2024; 169 PC Bhaskar (436_CR9) 2016; 25 M Das (436_CR16) 2022 436_CR22 P Xiong (436_CR108) 2016; 37 HT Chiang (436_CR14) 2019; 7 Y Hou (436_CR37) 2023; 84 MZU Rahman (436_CR76) 2011; 91 A Azzouz (436_CR3) 2023; 37 X Wang (436_CR102) 2022; 26 HD Hesar (436_CR35) 2019; 23 HD Hesar (436_CR36) 2021; 25 M Rakshit (436_CR77) 2018; 40 F Samann (436_CR84) 2023; 166 436_CR38 Y Bengio (436_CR8) 2013; 35 L Hu (436_CR41) 2024; 88 436_CR32 BR de Oliveira (436_CR20) 2018; 34 A Rifai (436_CR81) 2024; 13 P Xiong (436_CR107) 2015; 5 E Spanò (436_CR95) 2016; 16 M Suchetha (436_CR97) 2013; 8 YS Jhang (436_CR46) 2022 B Liu (436_CR59) 2021; 68 436_CR43 U Lomoio (436_CR61) 2024; 160 V Gupta (436_CR27) 2022 Y Xia (436_CR105) 2023; 80 M Bahaz (436_CR5) 2018; 41 M Alfaouri (436_CR1) 2008; 5 436_CR114 Y Li (436_CR56) 2022; 72 436_CR115 B Marwan (436_CR65) 2022; 8 M Das (436_CR17) 2024 P Singh (436_CR92) 2021; 18 H Huang (436_CR42) 2023; 44 F Samann (436_CR83) 2022; 8 H Hao (436_CR30) 2019; 79 436_CR51 436_CR50 W Jenkal (436_CR45) 2016; 36 P Xiong (436_CR109) 2016; 52 436_CR52 436_CR7 PS Gokhale (436_CR25) 2012; 2 H Kameoka (436_CR48) 2019; 27 I Houamed (436_CR40) 2020; 36 YD Lin (436_CR57) 2008; 55 R Sameni (436_CR87) 2007; 54 |
| References_xml | – volume: 8 start-page: 161 issue: 2 year: 2022 ident: 436_CR83 publication-title: Curr Dir Biomed Eng doi: 10.1515/cdbme-2022-1042 – volume: 27 start-page: 1432 issue: 9 year: 2019 ident: 436_CR48 publication-title: IEEE ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2019.2917232 – ident: 436_CR51 doi: 10.17303/jber.2019.3.101 – volume: 8 start-page: 575 issue: 6 year: 2013 ident: 436_CR97 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.05.001 – ident: 436_CR7 doi: 10.1109/ACCESS.2018.2864675 – ident: 436_CR22 doi: 10.1109/INISTA52262.2021.9548524 – volume: 9 start-page: 88 issue: 1 year: 2015 ident: 436_CR110 publication-title: IET Signal Processing doi: 10.1049/iet-spr.2014.0005 – ident: 436_CR114 doi: 10.3390/bios12070475 – volume: 52 start-page: 198 year: 2018 ident: 436_CR112 publication-title: Cogn. Syst. Res doi: 10.1016/j.cogsys.2018.07.004 – ident: 436_CR86 doi: 10.1109/CIC.2005.1588283 – volume: 80 start-page: 81 year: 2023 ident: 436_CR105 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2023.05.004 – ident: 436_CR64 doi: 10.1109/ICICyTA57421.2022.10037967 – ident: 436_CR99 doi: 10.1161/CIR.0000000000001123 – ident: 436_CR32 doi: 10.1109/IECBES.2014.7047605 – ident: 436_CR67 doi: 10.23919/APSIPAASC55919.2022.9980058 – volume: 31 start-page: 2345 issue: 4 year: 2024 ident: 436_CR78 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10047-6 – volume: 71 year: 2022 ident: 436_CR79 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103275 – ident: 436_CR71 doi: 10.1109/NCC.2016.7561206 – year: 2019 ident: 436_CR103 publication-title: Springer International Publishing doi: 10.1007/978-3-030-02819-0 – volume: 28 start-page: 1993 issue: 4 year: 2024 ident: 436_CR13 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2024.3355960 – volume: 91 start-page: 225 issue: 2 year: 2011 ident: 436_CR76 publication-title: Signal Process doi: 10.1016/j.sigpro.2010.07.002 – volume: 40 start-page: 219 issue: 1 year: 2017 ident: 436_CR94 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-016-0510-6 – ident: 436_CR52 doi: 10.1109/CONIT55038.2022.9847756 – volume: 16 start-page: 5452 issue: 13 year: 2016 ident: 436_CR95 publication-title: IEEE Sens J doi: 10.1109/JSEN.2016.2564995 – volume: 69 start-page: 1 year: 2021 ident: 436_CR111 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102830 – ident: 436_CR73 – volume: 5 start-page: 276 issue: 3 year: 2008 ident: 436_CR1 publication-title: Am J Appl Sci doi: 10.3844/ajassp.2008.276.281 – volume: 9 start-page: 56699 year: 2021 ident: 436_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072640 – volume: 175 start-page: 139 year: 2019 ident: 436_CR101 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.03.019 – ident: 436_CR115 doi: 10.1088/1361-6579/ab69b9 – volume: 68 start-page: 3267 issue: 5 year: 2022 ident: 436_CR28 publication-title: IETE J Res doi: 10.1080/03772063.2020.1756473 – ident: 436_CR80 doi: 10.48550/arXiv.1906.00446 – year: 2022 ident: 436_CR46 publication-title: Appl Sci doi: 10.3390/app12146957 – year: 2024 ident: 436_CR17 publication-title: IETE J Res doi: 10.1080/03772063.2024.2410428 – volume: 4 start-page: 2 issue: 1 year: 2017 ident: 436_CR89 publication-title: Healthc Technol Lett doi: 10.1049/htl.2016.0077 – volume: 124 start-page: 1 year: 2023 ident: 436_CR82 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106484 – volume: 21 start-page: 1581 issue: 6 year: 2017 ident: 436_CR33 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2706298 – volume: 44 start-page: 247 issue: 4 year: 1997 ident: 436_CR54 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.563294 – volume: 25 start-page: 13 issue: 1 year: 2021 ident: 436_CR36 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2982935 – volume: 23 start-page: 112 issue: 1 year: 2019 ident: 436_CR35 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2794362 – volume: 7 start-page: 60806 year: 2019 ident: 436_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912036 – volume: 22 start-page: 22908 issue: 23 year: 2022 ident: 436_CR24 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3213586 – volume: 34 start-page: 73 issue: 1 year: 2018 ident: 436_CR20 publication-title: Research on Biomedical Engineering doi: 10.1590/2446-4740.01817 – volume: 67 start-page: 921 issue: 6 year: 2021 ident: 436_CR26 publication-title: IETE J Res doi: 10.1080/03772063.2019.1575292 – volume: 19 start-page: 210 issue: 2 year: 2007 ident: 436_CR60 publication-title: Cardiol J doi: 10.5603/CJ.2012.0039 – volume: 166 start-page: 1 year: 2023 ident: 436_CR84 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107553 – volume: 21 start-page: 635 issue: 3 year: 2017 ident: 436_CR34 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2016.2582340 – volume: 118 start-page: 317 issue: 2 year: 2024 ident: 436_CR66 publication-title: Analog Integr Circ Signal Process doi: 10.1007/s10470-023-02200-9 – volume: 11 start-page: 7536 issue: 5 year: 2021 ident: 436_CR68 publication-title: Eng Technol Appl Sci Res doi: 10.48084/etasr.4302 – ident: 436_CR88 doi: 10.1109/SPIN.2015.7095425 – volume: 40 start-page: 140 year: 2018 ident: 436_CR77 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.09.020 – volume: 36 start-page: 499 issue: 3 year: 2016 ident: 436_CR45 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2016.04.001 – volume: 55 start-page: 354 issue: 1 year: 2008 ident: 436_CR57 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.902234 – volume: 80 start-page: 81 year: 2023 ident: 436_CR104 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2023.05.004 – volume: 37 start-page: 2214 issue: 12 year: 2016 ident: 436_CR108 publication-title: Physiol. Meas doi: 10.1088/0967-3334/37/12/2214 – volume: 71 start-page: 1 year: 2022 ident: 436_CR93 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2022.3197757 – volume: 84 start-page: 1 year: 2023 ident: 436_CR37 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104964 – volume: 37 start-page: 1387 issue: 6 year: 2023 ident: 436_CR3 publication-title: Rev Intell Artif doi: 10.18280/ria.370602 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 436_CR55 publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 652 issue: 2 year: 2022 ident: 436_CR65 publication-title: Curr Dir Biomed Eng doi: 10.1515/cdbme-2022-1166 – ident: 436_CR11 – ident: 436_CR15 doi: 10.1016/j.bspc.2023.105242 – volume: 18 start-page: 759 issue: 2 year: 2021 ident: 436_CR92 publication-title: IEEE ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2020.2976981 – ident: 436_CR63 – ident: 436_CR2 doi: 10.23919/EUSIPCO.2019.8902833 – volume: 22 start-page: 2304 issue: 12 year: 2015 ident: 436_CR21 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2015.2476667 – ident: 436_CR50 doi: 10.7763/IJIEE.2011.V1.33 – ident: 436_CR19 doi: 10.1016/j.bspc.2020.102225 – ident: 436_CR43 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 436_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – volume: 52 start-page: 528 issue: 6 year: 2018 ident: 436_CR23 publication-title: Autom Control Comput Sci doi: 10.3103/S0146411618060044 – ident: 436_CR74 doi: 10.1136/bmj.n71 – volume: 52 start-page: 194 year: 2016 ident: 436_CR109 publication-title: Eng. Appl. Artif. Intell doi: 10.1016/j.engappai.2016.02.015 – volume: 1 start-page: 104 issue: 3 year: 2014 ident: 436_CR53 publication-title: Healthc Technol Lett doi: 10.1049/htl.2014.0073 – volume: 69 start-page: 1 year: 2021 ident: 436_CR96 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102903 – volume: 36 start-page: 349 issue: 3 year: 2020 ident: 436_CR40 publication-title: Research on Biomedical Engineering doi: 10.1007/s42600-020-00075-7 – volume: 44 start-page: 1726 issue: 8 year: 2023 ident: 436_CR42 publication-title: Pediatr Cardiol doi: 10.1007/s00246-023-03273-z – volume: 8 start-page: 617 issue: 5 year: 2014 ident: 436_CR98 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2014.2359053 – year: 2023 ident: 436_CR58 publication-title: Electronics doi: 10.3390/electronics12071606 – ident: 436_CR62 doi: 10.1109/ICIEM51511.2021.9445297 – ident: 436_CR100 – volume: 169 start-page: 1 year: 2024 ident: 436_CR113 publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2023.107835 – year: 2021 ident: 436_CR31 publication-title: J Circuits Syst Comput doi: 10.1142/S0218126621500614 – volume: 68 start-page: 1 year: 2021 ident: 436_CR59 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102751 – volume: 54 start-page: 2172 issue: 12 year: 2007 ident: 436_CR87 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.897817 – volume: 10 start-page: 98104 year: 2022 ident: 436_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3206620 – volume: 4 start-page: 1260 issue: 10 year: 2005 ident: 436_CR12 publication-title: WSEAS Trans Circuits Syst – year: 2014 ident: 436_CR49 publication-title: J Neural Eng doi: 10.1088/1741-2560/11/2/026017 – volume: 72 start-page: 1 year: 2023 ident: 436_CR39 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2023.3251408 – ident: 436_CR38 doi: 10.1016/j.bspc.2023.104964 – volume: 88 start-page: 1 year: 2024 ident: 436_CR41 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105504 – volume: 37 start-page: 119 issue: 1 year: 2020 ident: 436_CR18 publication-title: Traitement Du Signal doi: 10.18280/ts.370116 – volume: 41 start-page: 143 issue: 1 year: 2018 ident: 436_CR5 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-018-0623-1 – ident: 436_CR6 doi: 10.1109/PerComWorkshops53856.2022.9767313 – volume: 9 start-page: 2555 issue: 3 year: 2023 ident: 436_CR106 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00188-7 – ident: 436_CR4 doi: 10.14445/22315381/IJETT-V71I2P240 – volume: 22 start-page: 1133 issue: 4 year: 2018 ident: 436_CR44 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2753321 – volume: 10 start-page: 57555 year: 2022 ident: 436_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3178847 – ident: 436_CR70 – volume: 13 start-page: 60 issue: 2 year: 2024 ident: 436_CR81 publication-title: Computer Engineering and Applications Journal doi: 10.18495/comengapp.v13i2.482 – year: 2022 ident: 436_CR16 publication-title: Journal of the Institution of Engineers (India): Series B doi: 10.1007/s40031-022-00796-6 – year: 2022 ident: 436_CR27 publication-title: IETE J Res doi: 10.1080/03772063.2022.2135622 – volume: 43 start-page: 105 issue: 1 year: 1996 ident: 436_CR29 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.477707 – volume: 160 start-page: 1 year: 2024 ident: 436_CR61 publication-title: SSRN Electron J doi: 10.2139/ssrn.4787032 – volume: 55 start-page: 2240 issue: 9 year: 2008 ident: 436_CR90 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.921150 – volume: 5 start-page: 1804 issue: 8 year: 2015 ident: 436_CR107 publication-title: J. Med. Imaging Health Infor. doi: 10.1166/jmihi.2015.1649 – volume: 2 start-page: 81 issue: 5 year: 2012 ident: 436_CR25 publication-title: Int J Emerg Technol Adv Eng – volume: 72 year: 2022 ident: 436_CR56 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103344 – volume: 7 start-page: 13 issue: 1 year: 2011 ident: 436_CR72 publication-title: Al-Khwarizmi Eng J – volume: 26 start-page: 2929 issue: 7 year: 2022 ident: 436_CR102 publication-title: IEEE J Biomed Health Inform. doi: 10.1109/JBHI.2022.3169325 – volume: 32 start-page: 1017 year: 2005 ident: 436_CR85 publication-title: Comput Cardiol doi: 10.1109/CIC.2005.1588283 – ident: 436_CR69 – volume: 25 start-page: 497 year: 2016 ident: 436_CR9 publication-title: Procedia Technol doi: 10.1016/j.protcy.2016.08.137 – ident: 436_CR75 – volume: 79 start-page: 34 year: 2019 ident: 436_CR30 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.12.004 |
| SSID | ssib044758322 ssj0001671981 |
| Score | 2.3111298 |
| SecondaryResourceType | review_article |
| Snippet | Purpose
Cardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts.... PurposeCardiovascular disease diagnosis relies on the accurate interpretation of electrocardiogram (ECG) signals, which are sensitive to noise and artifacts.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 57 |
| SubjectTerms | Algorithms Artificial neural networks Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Cardiovascular diseases Coders Comparative analysis Comparative studies Compression Deep learning EKG Electrocardiography Energy resources Energy sources Engineering Flexibility Fourier transforms Generative adversarial networks Heart Mathematical models Memory devices Neural networks Noise Noise reduction Noise sensitivity Peripheral equipment (computers) Portable equipment Real time Review Signal processing Signal transmission Surveys Telemetry Wavelet transforms Wearable technology |
| Title | A comprehensive review on encoder–decoder architectures in ECG signal compression and denoising: opportunities, challenges, and prospects |
| URI | https://link.springer.com/article/10.1007/s42600-025-00436-0 https://www.proquest.com/docview/3261621523 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2446-4740 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044758322 issn: 2446-4732 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2446-4740 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001671981 issn: 2446-4732 databaseCode: RSV dateStart: 20190301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EolQc2aimJE9thq6oWBqgQj6pblPghuiRV0zIidkb-Ib8E20nagmCAzVIsJ7k7--58d98BcCZ4wEJFJQpZ6CFf-AwlWGEUSI97ccAEtQCmg2va77PhMLwti8LyKtu9Cknak3pe7Gax1JFpv2px05F21Ne0umNmO97dDyopMgh2RkwXNy2Eas_aeF5alRHkU-yV1TM_L_tVQy3Mzm-RUquAetv_-_QdsFUanLBdSMguWJHpHthcgiHcB29taDLLJ_KpyGaHRT0LzFJoYC6FnHy8vgtpR3A58pDDUQq7nUtoskD0S4pVTF5tCuNUQH2mZSNzGXEBs7Ex9GepBXBtQV71cNFjM1P_v635zA_AY6_70LlCZZMGxF291xFOlAz82I-xZq-bcEU5YYqH2GGKBl7sUh44cey4kiohtURw11U4xFJywqWS-BDU0iyVRwASQgURgiauJ3yeSCa0NegQjhOh7UTi1cF5xZhoXGBxRHPUZUviSJM4siSOnDpoVLyLyn2ZR9pYdYlp5YvroFXxavH499WO_zb9BGx4ht0276UBatPJTJ6Cdf48HeWTJli9eek2rdR-AvE054U |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQQQIG3ohCAQ9s1FISJ3bCVlUtRZQKQam6RYkfoktSNS0zOyP_kF-C7SRtQTDAZimWk9ydfWf7u-8AuODM8wNJBQr8wEEud30UY4mRJxzmRJ7PqSEwHXRpr-cPh8F9kRSWlWj38krSrNTzZDfDpY50-VXDm47URn3VVR5LA_keHgelFWkGO22mi5MWQtXOWu-8lCsjyKXYKbJnfh72q4dahJ3fbkqNA2pv_-_Td8BWEXDCRm4hu2BFJHtgc4mGcB-8NaBGlk_Ec45mh3k-C0wTqGkuuZh8vL5zYVpw-eYhg6MEtprXUKNA1EvyUTSuNoFRwqFa09KRPoy4gulYB_qzxBC41iEra7iotu6p_t_kfGYH4Knd6jc7qCjSgJit5jrCsRSeG7kRVuq1YyYpI75kAbZ8ST0nsinzrCiybEElF8oimG1LHGAhGGFCCnwIKkmaiCMACaGccE5j2-Eui4XPVTRoEYZjruJE4lTBZamYcJxzcYRz1mUj4lCJODQiDq0qqJW6C4t5mYUqWLWJLuWLq6Be6mrx-PfRjv_W_Rysd_p33bB707s9ARuOVr3BwNRAZTqZiVOwxl6mo2xyZmz3E1vZ6Tg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQQQgG3ohCAQ9s1GoSJ3bCVpUWEFVVCai6RYkfootT9cHMzsg_5JdgO01bEAyIzVKsi3J38d357r4D4IKzIIwkFSgKIw_53A9RiiVGgfCYlwQhpxbAtNemnU7Y70fdpS5-W-1epCTzngaD0qQmtSGXtXnjm8VVR2YUq8VQRzpoX_XN0CATrz_0Co0yaHZGZRe3LoTqKNtEYdqsEeRT7M06aX4m-9VaLVzQb1lTa4xa2___jB2wNXNEYT3XnF2wItQe2FyCJ9wHb3VoKs5H4jmvcod5nwvMFDTwl1yMPl7fubAruJyRGMOBgs3GDTTVIfolORVTb6tgojjUZ102MJcUVzAbmgBgqiywaxWyYraLXpudmhe2F3R8AJ5azcfGLZoNb0DM1WcAwqkUgZ_4CdZid1MmKSOhZBF2QkkDL3EpC5wkcVxBJRdaU5jrShxhIRhhQgp8CEoqU-IIQEIoJ5zT1PW4z1IRcu0lOoThlGv_kXhlcFkIKR7mGB3xHI3ZsjjWLI4ti2OnDCqFHOPZ_zqOtRPrEjPiF5dBtZDb4vHv1I7_tv0crHevW3H7rnN_AjY8I3lbGlMBpcloKk7BGnuZDMajM6vGn1cf8hw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+encoder%E2%80%93decoder+architectures+in+ECG+signal+compression+and+denoising%3A+opportunities%2C+challenges%2C+and+prospects&rft.jtitle=Research+on+biomedical+engineering&rft.au=Das%2C+Maumita&rft.au=Sahana%2C+Bikash+Chandra&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2446-4732&rft.eissn=2446-4740&rft.volume=41&rft.issue=4&rft.spage=57&rft_id=info:doi/10.1007%2Fs42600-025-00436-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2446-4732&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2446-4732&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2446-4732&client=summon |