MAGORINO : Magnitude‐only fat fraction and R 2 estimation with Rician noise modeling
Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a sou...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 89; číslo 3; s. 1173 - 1192 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley and Sons Inc
01.03.2023
|
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and
estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and
estimation with Rician noise modeling (MAGORINO).
Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF,
, and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo.
Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation.
The MAGORINO algorithm reduces Rician noise-related bias in PDFF and
estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist. |
|---|---|
| AbstractList | Click here
for author‐reader discussions Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and estimation with Rician noise modeling (MAGORINO). Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo. Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation. The MAGORINO algorithm reduces Rician noise-related bias in PDFF and estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist. Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation with Rician noise modeling (MAGORINO).PURPOSEMagnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation with Rician noise modeling (MAGORINO).Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, R 2 * $$ {R}_2^{\ast } $$ , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo.METHODSSimulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, R 2 * $$ {R}_2^{\ast } $$ , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo.Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation.RESULTSSimulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation.The MAGORINO algorithm reduces Rician noise-related bias in PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.CONCLUSIONThe MAGORINO algorithm reduces Rician noise-related bias in PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist. |
| Author | Zhang, Hui Bray, Timothy J. P. Lim, Emma Bainbridge, Alan Hall‐Craggs, Margaret A. |
| AuthorAffiliation | 4 Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom 2 Department of Imaging University College London Hospital London United Kingdom 5 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom 3 Department of Medical Physics University College London Hospitals London United Kingdom 1 Centre for Medical Imaging University College London London United Kingdom |
| AuthorAffiliation_xml | – name: 1 Centre for Medical Imaging University College London London United Kingdom – name: 2 Department of Imaging University College London Hospital London United Kingdom – name: 4 Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom – name: 5 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom – name: 3 Department of Medical Physics University College London Hospitals London United Kingdom |
| Author_xml | – sequence: 1 givenname: Timothy J. P. orcidid: 0000-0001-8886-5356 surname: Bray fullname: Bray, Timothy J. P. organization: Centre for Medical Imaging University College London London United Kingdom, Department of Imaging University College London Hospital London United Kingdom – sequence: 2 givenname: Alan surname: Bainbridge fullname: Bainbridge, Alan organization: Centre for Medical Imaging University College London London United Kingdom, Department of Medical Physics University College London Hospitals London United Kingdom – sequence: 3 givenname: Emma orcidid: 0000-0001-5577-9427 surname: Lim fullname: Lim, Emma organization: Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom – sequence: 4 givenname: Margaret A. orcidid: 0000-0001-8734-4065 surname: Hall‐Craggs fullname: Hall‐Craggs, Margaret A. organization: Centre for Medical Imaging University College London London United Kingdom, Department of Medical Physics University College London Hospitals London United Kingdom – sequence: 5 givenname: Hui orcidid: 0000-0002-5426-2140 surname: Zhang fullname: Zhang, Hui organization: Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36321525$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkU1OwzAQhS0Egraw4ALIS1ik2JOkidkghKBUaqlUAVvLcZzWKLEhTkHdcQTOyElwS4v4WViWPd-8Z79po21jjULokJIuJQROq7rqAotYuIVaNAYIIGbRNmqRJCJBSFm0h9rOPRJCGEuiXbQX9kLwYNxCD6OL_ngyuB3jMzwSU6Obea4-3t6tKRe4EA0uaiEbbQ0WJscTDFi5RldidfWqmxmeaKmFwcZqp3Blc1VqM91HO4UonTpY7x10f311d3kTDMf9weXFMJA07SWBDAmjPcIg6-VZCiJLRArA1LIYiZRkNE5AMiaoUlmW0oz6Y1wIyBWjaarCDjr_0n2aZ5XKpTJNLUr-VPsn1gtuhea_K0bP-NS-cJ8bA0gTr3C8Vqjt89x_jlfaSVWWwig7dxySkEbA_PLo0U-zb5dNmh44_QJkbZ2rVcGlblZReW9detOlL3A_L76al-84-dOxEf3PfgJIw5YE |
| CitedBy_id | crossref_primary_10_3390_diagnostics14111138 crossref_primary_10_1002_mrm_29860 |
| Cites_doi | 10.1002/mrm.10728 10.1016/j.mri.2007.08.012 10.1148/radiol.2015142254 10.1002/jmri.20831 10.1002/mrm.22670 10.1148/radiol.15140446 10.1002/nbm.1539 10.1002/mrm.24607 10.1002/jmri.21090 10.1002/mrm.26729 10.1109/42.712125 10.1002/(SICI)1522-2594(199903)41:3<614::AID-MRM26>3.0.CO;2-1 10.1002/mrm.21744 10.1002/mrm.21301 10.1002/mrm.22916 10.1002/mrm.21522 10.1002/jmri.24948 10.1002/mrm.22177 10.1002/jmri.20467 10.1002/jmri.21751 10.1002/mrm.26228 10.1002/mrm.10675 10.1002/mrm.25111 10.1016/j.mri.2008.02.001 10.1002/mrm.24593 10.1002/jmri.23851 10.1053/j.gastro.2017.06.005 10.1002/mrm.1910360216 10.1002/mrm.22178 10.1002/mrm.27728 10.1002/hep.29596 10.1002/hep.26455 10.1182/blood-2004-10-3982 10.1002/mrm.22835 10.1002/mrm.20624 10.1148/radiol.2017170550 10.1007/s00330-017-4907-8 10.1002/jmri.24584 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/mrm.29493 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Bray et al |
| EISSN | 1522-2594 |
| EndPage | 1192 |
| ExternalDocumentID | PMC10092287 36321525 10_1002_mrm_29493 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Department of Health grantid: CL-2019-18-001 – fundername: ; grantid: CL‐2019‐18‐001 – fundername: ; |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c1867-c30916092b6db82ab7a8229e18674a80b1572c99a1eebb81b172c5fa2de9188e3 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:06:55 EST 2025 Thu Oct 02 10:08:01 EDT 2025 Thu Apr 03 07:06:54 EDT 2025 Tue Nov 18 20:59:37 EST 2025 Sat Nov 29 06:34:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | computer-assisted imaging processing magnetic resonance imaging radiology |
| Language | English |
| License | 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1867-c30916092b6db82ab7a8229e18674a80b1572c99a1eebb81b172c5fa2de9188e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information Research Trainees Coordinating Centre, Grant/Award Number: CL‐2019‐18‐001; National Institute for Health Research, NIHR, UCLH Biomedical Research Centre |
| ORCID | 0000-0001-5577-9427 0000-0002-5426-2140 0000-0001-8886-5356 0000-0001-8734-4065 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10092287 |
| PMID | 36321525 |
| PQID | 2731429142 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092287 proquest_miscellaneous_2731429142 pubmed_primary_36321525 crossref_citationtrail_10_1002_mrm_29493 crossref_primary_10_1002_mrm_29493 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2023 |
| Publisher | John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley and Sons Inc |
| References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 Wells SA (e_1_2_9_17_1) 2019 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Raya JG (e_1_2_9_34_1) 2010 Morrow JM (e_1_2_9_11_1) 2015 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – start-page: 108 year: 2019 ident: e_1_2_9_17_1 publication-title: Radiology – ident: e_1_2_9_33_1 doi: 10.1002/mrm.10728 – ident: e_1_2_9_27_1 doi: 10.1016/j.mri.2007.08.012 – ident: e_1_2_9_9_1 doi: 10.1148/radiol.2015142254 – ident: e_1_2_9_18_1 doi: 10.1002/jmri.20831 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.22670 – ident: e_1_2_9_10_1 doi: 10.1148/radiol.15140446 – ident: e_1_2_9_26_1 doi: 10.1002/nbm.1539 – ident: e_1_2_9_40_1 doi: 10.1002/mrm.24607 – ident: e_1_2_9_20_1 doi: 10.1002/jmri.21090 – ident: e_1_2_9_13_1 doi: 10.1002/mrm.26729 – ident: e_1_2_9_31_1 doi: 10.1109/42.712125 – ident: e_1_2_9_32_1 doi: 10.1002/(SICI)1522-2594(199903)41:3<614::AID-MRM26>3.0.CO;2-1 – ident: e_1_2_9_25_1 doi: 10.1002/mrm.21744 – ident: e_1_2_9_2_1 doi: 10.1002/mrm.21301 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.22916 – ident: e_1_2_9_21_1 doi: 10.1002/mrm.21522 – ident: e_1_2_9_39_1 doi: 10.1002/jmri.24948 – ident: e_1_2_9_22_1 doi: 10.1002/mrm.22177 – start-page: 65 year: 2015 ident: e_1_2_9_11_1 article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study publication-title: Lancet Neurol. – ident: e_1_2_9_23_1 doi: 10.1002/jmri.20467 – ident: e_1_2_9_19_1 doi: 10.1002/jmri.21751 – ident: e_1_2_9_38_1 doi: 10.1002/mrm.26228 – ident: e_1_2_9_3_1 doi: 10.1002/mrm.10675 – ident: e_1_2_9_36_1 doi: 10.1002/mrm.25111 – ident: e_1_2_9_37_1 doi: 10.1016/j.mri.2008.02.001 – ident: e_1_2_9_15_1 doi: 10.1002/mrm.24593 – ident: e_1_2_9_28_1 doi: 10.1002/jmri.23851 – ident: e_1_2_9_7_1 doi: 10.1053/j.gastro.2017.06.005 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.1910360216 – start-page: 181 year: 2010 ident: e_1_2_9_34_1 article-title: T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR publication-title: Magn Reson Med. doi: 10.1002/mrm.22178 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.27728 – ident: e_1_2_9_6_1 doi: 10.1002/hep.29596 – ident: e_1_2_9_8_1 doi: 10.1002/hep.26455 – ident: e_1_2_9_24_1 doi: 10.1182/blood-2004-10-3982 – ident: e_1_2_9_35_1 doi: 10.1002/mrm.22835 – ident: e_1_2_9_4_1 doi: 10.1002/mrm.20624 – ident: e_1_2_9_5_1 doi: 10.1148/radiol.2017170550 – ident: e_1_2_9_14_1 doi: 10.1007/s00330-017-4907-8 – ident: e_1_2_9_16_1 doi: 10.1002/jmri.24584 |
| SSID | ssj0009974 |
| Score | 2.4111018 |
| Snippet | Click here
for author‐reader discussions Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase... Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1173 |
| SubjectTerms | Adipose Tissue - diagnostic imaging Algorithms Computer Simulation Likelihood Functions Magnetic Resonance Imaging - methods Normal Distribution Protons Reproducibility of Results s—Computer Processing and Modeling |
| Title | MAGORINO : Magnitude‐only fat fraction and R 2 estimation with Rician noise modeling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36321525 https://www.proquest.com/docview/2731429142 https://pubmed.ncbi.nlm.nih.gov/PMC10092287 |
| Volume | 89 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dqa9IBi3cpkM4gEpSlc7d96qsmmgtVTVKvWtshNHVErdqpdpe-Mn8Nv4CfwSjuM4SdkeAImHRlXiOorPV59znOPvQ-gdo16Sck5tR8TMdhlx7VD4HTuNIhZDihEwnquWXASDQTiZRMNG44fZC3OVBVKG19fR8r-aGs6BsdXW2b8wd9kpnIDvYHQ4gtnh-EeG76s1tE-DLyrX7zNVHLRNRFnTsJDZjZWyjZWujEq42qFoUUvRbeh9jHpxdpQveFhyMVsLLZhjvJwRgILOhaaAVvG8miFm8q6X9Tc1UFif29awXa2fziQv9d27Wa1ASKs8n84rv3HOsqx8jt6KFav6RqrX6rbrSxjUqWq4tHupaoR0uapc71aBQpijnIVWQ26LYqaGLBpyN7c-lWs1ogKyTm1eJkQLphQ-nhAtwHfLf2g-2vlq3qaRq6Uba5BZznPMOL6j1IC9yoWWhY3Dfo8oGivIQ_fQPg28KGyi_Y-js_FFRQUdaW5w81CG76pDT8obH6IDc5fdgOlWFvR7MW8tOrp8iB4UaQ3uajg-Qg0hj9BBv8DCEbqfVxrH68dobPD5AZfo_Pntu8IlBlxig0sMRsIjTHGFS6xwiTUucY5LbHD5BI3PTi9753ah7WHHikLRjh0IVH0YKe4nPKSMB0xJDwh10WVhhxMvoDFMGEQIziG3gkA79lJGExGRMBTOU9SUCymeI9xJgrxYmQqXuoIQHjnC90QqfOakCSct9N4M4DQuiO-V_ko21ZTddArDPs2HvYXelk2Xmu3lrkZvjBWmMBerF2xMisV2PYVUgEB8B58WeqatUnZjzNlC4Y69ygaK5333ipx9zfneDaJe_PtPX6LD6o_3CjU3q614je7FV5vZenWM9oJJeFzg9BdYHM3m |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAGORINO%3A+Magnitude%E2%80%90only+fat+fraction+and+R+2+estimation+with+Rician+noise+modeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bray%2C+Timothy+J.+P.&rft.au=Bainbridge%2C+Alan&rft.au=Lim%2C+Emma&rft.au=Hall%E2%80%90Craggs%2C+Margaret+A.&rft.date=2023-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=3&rft.spage=1173&rft.epage=1192&rft_id=info:doi/10.1002%2Fmrm.29493&rft_id=info%3Apmid%2F36321525&rft.externalDocID=PMC10092287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |