MAGORINO : Magnitude‐only fat fraction and R 2 estimation with Rician noise modeling

Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a sou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 89; číslo 3; s. 1173 - 1192
Hlavní autoři: Bray, Timothy J. P., Bainbridge, Alan, Lim, Emma, Hall‐Craggs, Margaret A., Zhang, Hui
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley and Sons Inc 01.03.2023
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and estimation with Rician noise modeling (MAGORINO). Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo. Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation. The MAGORINO algorithm reduces Rician noise-related bias in PDFF and estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.
AbstractList Click here for author‐reader discussions
Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and estimation with Rician noise modeling (MAGORINO). Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo. Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation. The MAGORINO algorithm reduces Rician noise-related bias in PDFF and estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.
Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation with Rician noise modeling (MAGORINO).PURPOSEMagnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation with Rician noise modeling (MAGORINO).Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, R 2 * $$ {R}_2^{\ast } $$ , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo.METHODSSimulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, R 2 * $$ {R}_2^{\ast } $$ , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo.Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation.RESULTSSimulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation.The MAGORINO algorithm reduces Rician noise-related bias in PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.CONCLUSIONThe MAGORINO algorithm reduces Rician noise-related bias in PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.
Author Zhang, Hui
Bray, Timothy J. P.
Lim, Emma
Bainbridge, Alan
Hall‐Craggs, Margaret A.
AuthorAffiliation 4 Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom
2 Department of Imaging University College London Hospital London United Kingdom
5 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
3 Department of Medical Physics University College London Hospitals London United Kingdom
1 Centre for Medical Imaging University College London London United Kingdom
AuthorAffiliation_xml – name: 1 Centre for Medical Imaging University College London London United Kingdom
– name: 2 Department of Imaging University College London Hospital London United Kingdom
– name: 4 Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom
– name: 5 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
– name: 3 Department of Medical Physics University College London Hospitals London United Kingdom
Author_xml – sequence: 1
  givenname: Timothy J. P.
  orcidid: 0000-0001-8886-5356
  surname: Bray
  fullname: Bray, Timothy J. P.
  organization: Centre for Medical Imaging University College London London United Kingdom, Department of Imaging University College London Hospital London United Kingdom
– sequence: 2
  givenname: Alan
  surname: Bainbridge
  fullname: Bainbridge, Alan
  organization: Centre for Medical Imaging University College London London United Kingdom, Department of Medical Physics University College London Hospitals London United Kingdom
– sequence: 3
  givenname: Emma
  orcidid: 0000-0001-5577-9427
  surname: Lim
  fullname: Lim, Emma
  organization: Department of Imaging Imperial College Healthcare NHS Trust London United Kingdom
– sequence: 4
  givenname: Margaret A.
  orcidid: 0000-0001-8734-4065
  surname: Hall‐Craggs
  fullname: Hall‐Craggs, Margaret A.
  organization: Centre for Medical Imaging University College London London United Kingdom, Department of Medical Physics University College London Hospitals London United Kingdom
– sequence: 5
  givenname: Hui
  orcidid: 0000-0002-5426-2140
  surname: Zhang
  fullname: Zhang, Hui
  organization: Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36321525$$D View this record in MEDLINE/PubMed
BookMark eNplkU1OwzAQhS0Egraw4ALIS1ik2JOkidkghKBUaqlUAVvLcZzWKLEhTkHdcQTOyElwS4v4WViWPd-8Z79po21jjULokJIuJQROq7rqAotYuIVaNAYIIGbRNmqRJCJBSFm0h9rOPRJCGEuiXbQX9kLwYNxCD6OL_ngyuB3jMzwSU6Obea4-3t6tKRe4EA0uaiEbbQ0WJscTDFi5RldidfWqmxmeaKmFwcZqp3Blc1VqM91HO4UonTpY7x10f311d3kTDMf9weXFMJA07SWBDAmjPcIg6-VZCiJLRArA1LIYiZRkNE5AMiaoUlmW0oz6Y1wIyBWjaarCDjr_0n2aZ5XKpTJNLUr-VPsn1gtuhea_K0bP-NS-cJ8bA0gTr3C8Vqjt89x_jlfaSVWWwig7dxySkEbA_PLo0U-zb5dNmh44_QJkbZ2rVcGlblZReW9detOlL3A_L76al-84-dOxEf3PfgJIw5YE
CitedBy_id crossref_primary_10_3390_diagnostics14111138
crossref_primary_10_1002_mrm_29860
Cites_doi 10.1002/mrm.10728
10.1016/j.mri.2007.08.012
10.1148/radiol.2015142254
10.1002/jmri.20831
10.1002/mrm.22670
10.1148/radiol.15140446
10.1002/nbm.1539
10.1002/mrm.24607
10.1002/jmri.21090
10.1002/mrm.26729
10.1109/42.712125
10.1002/(SICI)1522-2594(199903)41:3<614::AID-MRM26>3.0.CO;2-1
10.1002/mrm.21744
10.1002/mrm.21301
10.1002/mrm.22916
10.1002/mrm.21522
10.1002/jmri.24948
10.1002/mrm.22177
10.1002/jmri.20467
10.1002/jmri.21751
10.1002/mrm.26228
10.1002/mrm.10675
10.1002/mrm.25111
10.1016/j.mri.2008.02.001
10.1002/mrm.24593
10.1002/jmri.23851
10.1053/j.gastro.2017.06.005
10.1002/mrm.1910360216
10.1002/mrm.22178
10.1002/mrm.27728
10.1002/hep.29596
10.1002/hep.26455
10.1182/blood-2004-10-3982
10.1002/mrm.22835
10.1002/mrm.20624
10.1148/radiol.2017170550
10.1007/s00330-017-4907-8
10.1002/jmri.24584
ContentType Journal Article
Copyright 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mrm.29493
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Bray et al
EISSN 1522-2594
EndPage 1192
ExternalDocumentID PMC10092287
36321525
10_1002_mrm_29493
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health
  grantid: CL-2019-18-001
– fundername: ;
  grantid: CL‐2019‐18‐001
– fundername: ;
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c1867-c30916092b6db82ab7a8229e18674a80b1572c99a1eebb81b172c5fa2de9188e3
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:55 EST 2025
Thu Oct 02 10:08:01 EDT 2025
Thu Apr 03 07:06:54 EDT 2025
Tue Nov 18 20:59:37 EST 2025
Sat Nov 29 06:34:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computer-assisted imaging processing
magnetic resonance imaging
radiology
Language English
License 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1867-c30916092b6db82ab7a8229e18674a80b1572c99a1eebb81b172c5fa2de9188e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information Research Trainees Coordinating Centre, Grant/Award Number: CL‐2019‐18‐001; National Institute for Health Research, NIHR, UCLH Biomedical Research Centre
ORCID 0000-0001-5577-9427
0000-0002-5426-2140
0000-0001-8886-5356
0000-0001-8734-4065
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10092287
PMID 36321525
PQID 2731429142
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092287
proquest_miscellaneous_2731429142
pubmed_primary_36321525
crossref_citationtrail_10_1002_mrm_29493
crossref_primary_10_1002_mrm_29493
PublicationCentury 2000
PublicationDate 2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
Wells SA (e_1_2_9_17_1) 2019
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Raya JG (e_1_2_9_34_1) 2010
Morrow JM (e_1_2_9_11_1) 2015
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 108
  year: 2019
  ident: e_1_2_9_17_1
  publication-title: Radiology
– ident: e_1_2_9_33_1
  doi: 10.1002/mrm.10728
– ident: e_1_2_9_27_1
  doi: 10.1016/j.mri.2007.08.012
– ident: e_1_2_9_9_1
  doi: 10.1148/radiol.2015142254
– ident: e_1_2_9_18_1
  doi: 10.1002/jmri.20831
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.22670
– ident: e_1_2_9_10_1
  doi: 10.1148/radiol.15140446
– ident: e_1_2_9_26_1
  doi: 10.1002/nbm.1539
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.24607
– ident: e_1_2_9_20_1
  doi: 10.1002/jmri.21090
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.26729
– ident: e_1_2_9_31_1
  doi: 10.1109/42.712125
– ident: e_1_2_9_32_1
  doi: 10.1002/(SICI)1522-2594(199903)41:3<614::AID-MRM26>3.0.CO;2-1
– ident: e_1_2_9_25_1
  doi: 10.1002/mrm.21744
– ident: e_1_2_9_2_1
  doi: 10.1002/mrm.21301
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.22916
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.21522
– ident: e_1_2_9_39_1
  doi: 10.1002/jmri.24948
– ident: e_1_2_9_22_1
  doi: 10.1002/mrm.22177
– start-page: 65
  year: 2015
  ident: e_1_2_9_11_1
  article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study
  publication-title: Lancet Neurol.
– ident: e_1_2_9_23_1
  doi: 10.1002/jmri.20467
– ident: e_1_2_9_19_1
  doi: 10.1002/jmri.21751
– ident: e_1_2_9_38_1
  doi: 10.1002/mrm.26228
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.10675
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.25111
– ident: e_1_2_9_37_1
  doi: 10.1016/j.mri.2008.02.001
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.24593
– ident: e_1_2_9_28_1
  doi: 10.1002/jmri.23851
– ident: e_1_2_9_7_1
  doi: 10.1053/j.gastro.2017.06.005
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.1910360216
– start-page: 181
  year: 2010
  ident: e_1_2_9_34_1
  article-title: T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.22178
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.27728
– ident: e_1_2_9_6_1
  doi: 10.1002/hep.29596
– ident: e_1_2_9_8_1
  doi: 10.1002/hep.26455
– ident: e_1_2_9_24_1
  doi: 10.1182/blood-2004-10-3982
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.22835
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.20624
– ident: e_1_2_9_5_1
  doi: 10.1148/radiol.2017170550
– ident: e_1_2_9_14_1
  doi: 10.1007/s00330-017-4907-8
– ident: e_1_2_9_16_1
  doi: 10.1002/jmri.24584
SSID ssj0009974
Score 2.4111018
Snippet Click here for author‐reader discussions
Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and estimation where complex-based methods fail or when phase...
Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1173
SubjectTerms Adipose Tissue - diagnostic imaging
Algorithms
Computer Simulation
Likelihood Functions
Magnetic Resonance Imaging - methods
Normal Distribution
Protons
Reproducibility of Results
s—Computer Processing and Modeling
Title MAGORINO : Magnitude‐only fat fraction and R 2 estimation with Rician noise modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/36321525
https://www.proquest.com/docview/2731429142
https://pubmed.ncbi.nlm.nih.gov/PMC10092287
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dqa9IBi3cpkM4gEpSlc7d96qsmmgtVTVKvWtshNHVErdqpdpe-Mn8Nv4CfwSjuM4SdkeAImHRlXiOorPV59znOPvQ-gdo16Sck5tR8TMdhlx7VD4HTuNIhZDihEwnquWXASDQTiZRMNG44fZC3OVBVKG19fR8r-aGs6BsdXW2b8wd9kpnIDvYHQ4gtnh-EeG76s1tE-DLyrX7zNVHLRNRFnTsJDZjZWyjZWujEq42qFoUUvRbeh9jHpxdpQveFhyMVsLLZhjvJwRgILOhaaAVvG8miFm8q6X9Tc1UFif29awXa2fziQv9d27Wa1ASKs8n84rv3HOsqx8jt6KFav6RqrX6rbrSxjUqWq4tHupaoR0uapc71aBQpijnIVWQ26LYqaGLBpyN7c-lWs1ogKyTm1eJkQLphQ-nhAtwHfLf2g-2vlq3qaRq6Uba5BZznPMOL6j1IC9yoWWhY3Dfo8oGivIQ_fQPg28KGyi_Y-js_FFRQUdaW5w81CG76pDT8obH6IDc5fdgOlWFvR7MW8tOrp8iB4UaQ3uajg-Qg0hj9BBv8DCEbqfVxrH68dobPD5AZfo_Pntu8IlBlxig0sMRsIjTHGFS6xwiTUucY5LbHD5BI3PTi9753ah7WHHikLRjh0IVH0YKe4nPKSMB0xJDwh10WVhhxMvoDFMGEQIziG3gkA79lJGExGRMBTOU9SUCymeI9xJgrxYmQqXuoIQHjnC90QqfOakCSct9N4M4DQuiO-V_ko21ZTddArDPs2HvYXelk2Xmu3lrkZvjBWmMBerF2xMisV2PYVUgEB8B58WeqatUnZjzNlC4Y69ygaK5333ipx9zfneDaJe_PtPX6LD6o_3CjU3q614je7FV5vZenWM9oJJeFzg9BdYHM3m
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAGORINO%3A+Magnitude%E2%80%90only+fat+fraction+and+R+2+estimation+with+Rician+noise+modeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bray%2C+Timothy+J.+P.&rft.au=Bainbridge%2C+Alan&rft.au=Lim%2C+Emma&rft.au=Hall%E2%80%90Craggs%2C+Margaret+A.&rft.date=2023-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=3&rft.spage=1173&rft.epage=1192&rft_id=info:doi/10.1002%2Fmrm.29493&rft_id=info%3Apmid%2F36321525&rft.externalDocID=PMC10092287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon