Crop disease detection via ensembled-deep-learning paradigm and ABC Coyote pack optimization algorithm (ABC-CPOA)
Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue,...
Saved in:
| Published in: | Multimedia tools and applications Vol. 84; no. 1; pp. 37 - 62 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue, this investigate uses an ensembled-deep-learning paradigm to propose a deep learning-based model for crop disease identification trained with an ABC-CPOA. Initially, collected raw images are pre-processed via Bilateral filter and gamma correction Feature Extraction: Then, from the pre-processed images, the features like texture feature (Local Quinary Pattern (LQP), Local Gradient Pattern (LGP), Enriched Local Binary Pattern (E-LBP), color features (Color Histogram, Color Moments), shape features (Contour-based features, Convex Hull). Optimal feature selection- Among the extracted features, the optimal features is designated by means of a self-improved meta-heuristic optimization model referred as ABC-CPOA. This ABC-CPOA model is an extended version of standard Coyote Optimization Algorithm (COA). Crop disease detection phase is modelled with a new ensembled-deep-learning paradigm. Ensembled-deep-learning paradigm comprises Attention-based Bi-LSTM, Recurrent Neural Networks (RNNs) and Optimized Deep Neural Network (O-DNN). The weight function of O-DNN is fine-tuned using the new ABC-CPOA. Precision, recall, sensitivity, and specificity, in addition to TPR, FPR, FNR, and TNR, F1-score, and accuracy are used to assess the suggested approach. The implementation was performed by the MATLAB tool (version: 2022B). |
|---|---|
| AbstractList | Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue, this investigate uses an ensembled-deep-learning paradigm to propose a deep learning-based model for crop disease identification trained with an ABC-CPOA. Initially, collected raw images are pre-processed via Bilateral filter and gamma correction Feature Extraction: Then, from the pre-processed images, the features like texture feature (Local Quinary Pattern (LQP), Local Gradient Pattern (LGP), Enriched Local Binary Pattern (E-LBP), color features (Color Histogram, Color Moments), shape features (Contour-based features, Convex Hull). Optimal feature selection- Among the extracted features, the optimal features is designated by means of a self-improved meta-heuristic optimization model referred as ABC-CPOA. This ABC-CPOA model is an extended version of standard Coyote Optimization Algorithm (COA). Crop disease detection phase is modelled with a new ensembled-deep-learning paradigm. Ensembled-deep-learning paradigm comprises Attention-based Bi-LSTM, Recurrent Neural Networks (RNNs) and Optimized Deep Neural Network (O-DNN). The weight function of O-DNN is fine-tuned using the new ABC-CPOA. Precision, recall, sensitivity, and specificity, in addition to TPR, FPR, FNR, and TNR, F1-score, and accuracy are used to assess the suggested approach. The implementation was performed by the MATLAB tool (version: 2022B). |
| Author | Jeyakumar, M. K. Chithambarathanu, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Chithambarathanu fullname: Chithambarathanu, M. email: chithambaramthanu@gmail.com organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education – sequence: 2 givenname: M. K. surname: Jeyakumar fullname: Jeyakumar, M. K. organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education |
| BookMark | eNp9kE9LAzEQxYNU0Fa_gKeAFz1Ek-xmsz3WxX9QqAc9h5hMa7SbbJOtsH56oxX0JAzMMLz3hvmN0cgHDwidMHrBKJWXiTFackJ5Sdi04FMy7KFDJmRBpORs9Gc-QOOUXillleDlIdo0MXTYugQ6AbbQg-ld8PjdaQw-Qfu8BkssQEfWoKN3foU7HbV1qxZrb_HsqsFNGEIPeW_ecOh617oP_Z2i16sQXf_S4rOsI83DYnZ-hPaXep3g-KdP0NPN9WNzR-aL2_tmNieG1WIgxsCykiCFrrmtgAkKZSHrsubCcMOZ5eJZLitt6qKWwHNpqktm81uFsIwXE3S6y-1i2Gwh9eo1bKPPJ1XBKspZVVUiq_hOZWJIKcJSddG1Og6KUfWFVu3QqoxWfaNVQzYVO1PKYr-C-Bv9j-sT38t9wA |
| Cites_doi | 10.3390/plants8110468 10.1016/j.compag.2021.106279 10.1007/s00034-019-01041-0 10.1016/j.inpa.2019.11.001 10.1016/j.asoc.2020.106597 10.3390/sym11070939 10.1016/j.bios.2016.09.032 10.1109/ACCESS.2020.2982456 10.1007/s11042-020-08726-8 10.1016/j.compag.2020.105446 10.1016/j.compag.2016.04.032 10.1016/j.micpro.2020.103615 10.1186/s13007-019-0475-z 10.1016/j.compind.2019.02.003 10.1016/j.compag.2019.105093 10.3390/bios5030537 10.1016/j.physa.2019.122537 10.3390/rs9020127 10.1016/j.compag.2018.04.002 10.1016/j.compag.2018.10.006 10.1016/j.compag.2017.09.012 10.1016/j.aiia.2019.09.002 10.1016/j.compag.2019.104948 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-19329-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 62 |
| ExternalDocumentID | 10_1007_s11042_024_19329_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c185y-ccef67e75a82d6e150e43784825c2c21d25b7f6ac8387e27e2a0a41d65235d123 |
| IEDL.DBID | RSV |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 15:42:20 EST 2025 Sat Nov 29 06:28:17 EST 2025 Fri Feb 21 02:37:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | O-DNN Crop disease detection RNN Attribute based -Bi LSTM Self-Improved Coyote Optimization Algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c185y-ccef67e75a82d6e150e43784825c2c21d25b7f6ac8387e27e2a0a41d65235d123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3160216665 |
| PQPubID | 54626 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_3160216665 crossref_primary_10_1007_s11042_024_19329_y springer_journals_10_1007_s11042_024_19329_y |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | M Arsenovic (19329_CR5) 2019; 11 KC Kamal (19329_CR24) 2019; 165 M Kerkech (19329_CR15) 2018; 155 Y Fang (19329_CR1) 2015; 5 M Agarwal (19329_CR17) 2020; 28 J Lu (19329_CR25) 2017; 142 S Coulibaly (19329_CR18) 2019; 108 MG Selvaraj (19329_CR13) 2019; 15 M Kerkech (19329_CR6) 2020; 174 A Picon (19329_CR12) 2019; 161 A Khamparia (19329_CR16) 2020; 39 V Singh (19329_CR8) 2017; 4 A Picon (19329_CR22) 2019; 167 RDL Pires (19329_CR23) 2016; 125 A Abbas (19329_CR9) 2021; 187 R Sujatha (19329_CR2) 2021; 80 P Sharma (19329_CR7) 2020; 7 MA Khan (19329_CR21) 2020; 79 S Hernández (19329_CR3) 2020; 96 Y Zhang (19329_CR10) 2020; 8 MH Saleem (19329_CR4) 2019; 8 SG Bajwa (19329_CR20) 2017; 9 M Ray (19329_CR14) 2017; 87 MM Ozguven (19329_CR19) 2019; 535 V Singh (19329_CR11) 2019; 3 |
| References_xml | – volume: 8 start-page: 468 issue: 11 year: 2019 ident: 19329_CR4 publication-title: Plants doi: 10.3390/plants8110468 – volume: 187 year: 2021 ident: 19329_CR9 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106279 – volume: 39 start-page: 818 year: 2020 ident: 19329_CR16 publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-019-01041-0 – volume: 7 start-page: 566 issue: 4 year: 2020 ident: 19329_CR7 publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2019.11.001 – volume: 28 year: 2020 ident: 19329_CR17 publication-title: Sustain Comput: Inf Syst – volume: 96 year: 2020 ident: 19329_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106597 – volume: 11 start-page: 939 issue: 7 year: 2019 ident: 19329_CR5 publication-title: Symmetry doi: 10.3390/sym11070939 – volume: 87 start-page: 708 year: 2017 ident: 19329_CR14 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.09.032 – volume: 8 start-page: 56607 year: 2020 ident: 19329_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982456 – volume: 79 start-page: 18627 year: 2020 ident: 19329_CR21 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08726-8 – volume: 174 year: 2020 ident: 19329_CR6 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2020.105446 – volume: 125 start-page: 48 year: 2016 ident: 19329_CR23 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.04.032 – volume: 80 year: 2021 ident: 19329_CR2 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2020.103615 – volume: 15 start-page: 1 year: 2019 ident: 19329_CR13 publication-title: Plant Methods doi: 10.1186/s13007-019-0475-z – volume: 4 start-page: 41 issue: 1 year: 2017 ident: 19329_CR8 publication-title: Inf Process Agriculture – volume: 108 start-page: 115 year: 2019 ident: 19329_CR18 publication-title: Comput Ind doi: 10.1016/j.compind.2019.02.003 – volume: 167 year: 2019 ident: 19329_CR22 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105093 – volume: 5 start-page: 537 issue: 3 year: 2015 ident: 19329_CR1 publication-title: Biosensors doi: 10.3390/bios5030537 – volume: 535 year: 2019 ident: 19329_CR19 publication-title: Physica A doi: 10.1016/j.physa.2019.122537 – volume: 9 start-page: 127 issue: 2 year: 2017 ident: 19329_CR20 publication-title: Remote Sensing doi: 10.3390/rs9020127 – volume: 161 start-page: 280 year: 2019 ident: 19329_CR12 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.002 – volume: 155 start-page: 237 year: 2018 ident: 19329_CR15 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.10.006 – volume: 142 start-page: 369 year: 2017 ident: 19329_CR25 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.09.012 – volume: 3 start-page: 62 year: 2019 ident: 19329_CR11 publication-title: Artif Intell Agriculture doi: 10.1016/j.aiia.2019.09.002 – volume: 165 year: 2019 ident: 19329_CR24 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.104948 |
| SSID | ssj0016524 |
| Score | 2.3702576 |
| Snippet | Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 37 |
| SubjectTerms | Algorithms Artificial neural networks Color Computer Communication Networks Computer Science Convexity Crop diseases Data Structures and Information Theory Deep learning Feature extraction Heuristic methods Image filters Machine learning Medical imaging Multimedia Information Systems Neural networks Optimization algorithms Optimization models Plant diseases Recurrent neural networks Shape Special Purpose and Application-Based Systems Weighting functions |
| Title | Crop disease detection via ensembled-deep-learning paradigm and ABC Coyote pack optimization algorithm (ABC-CPOA) |
| URI | https://link.springer.com/article/10.1007/s11042-024-19329-y https://www.proquest.com/docview/3160216665 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB2V0AM9EBpADYVqDxyoYKV4vf46BouIQ0URpRU3a707DhGJHRITKf--Y7MmLYIDSD7Za8ua2Z33ZmdnBuAwIxQ3meNzB33JJWqfR6KHHFGHoeMGOk3rROEfwcVFeHMTXdqksHlz2r0JSdaWepXs5lSpJIQpvCIdEV-uwTrBXVg1bLj69ecpduB7Qtr0mJff-x-CVrzyWSi0RphB-33_tgWbllGy_uMU-AwfMO9Au-nWwOzi7cCnf0oPbsN9PCumzIZnmMGyPpKVs8VIMfJscZKO0XCDOOW2scSQVWXCzWg4YSo3rH8as7hYFiXSfX3HCrI9E5vUydR4WMxG5e2EHdE4Hl_-7H_fgd-Ds-v4nNv2C1wTiC-51pj5AQaeCoXxkZgjSjcIJfmUWmjhGOGlQeYrHbphgIIu1VPSMSR_1zOEiLvQyoscvwBzFUYR2ZYsijLZQzclHiONdERPBWRRsAvHjUaS6WOVjWRVT7mSbUKyTWrZJssu7DdKS-yKmyeu4xNdIWfM68JJo6TV49e_tve24V9hQ1QtgOtdmH1olbMHPICPelGO5rNv9Uz8C-WI2i8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xqFRxAApFhFf3wAEEK_mxfh2DBQKRpohCxc1a745DBLFDYpDy7xmbNaGIHorkk722rJnd-b7RvAB2M0Jxndk-t9EXXKDyeeRYyBFVGNpuoNK0LhTuBN1ueHMTXZiisHGT7d6EJGtLPS12s6tSEsIUXpGOiE9mYV4QYlUd8y9__3mNHfieI0x5zMfv_Q1BU175LhRaI8zJ0uf-bRkWDaNk7Zct8A1mMF-BpWZaAzOHdwUW3rQeXIWHeFQMmQnPMI1lnZKVs6e-ZOTZ4iC9R8014pCbwRI9VrUJ1_3egMlcs_ZRzOJiUpRI99UdK8j2DExRJ5P3vWLUL28HbI_W8fjiV3v_O1yfHF_Fp9yMX-CKQHzClcLMDzDwZOhoH4k5onCDUJBPqRzl2Nrx0iDzpQrdMECHLmlJYWuSv-tpQsQ1mMuLHNeBuRKjiGxLFkWZsNBNiccILWzHkgFZFGzBQaORZPjSZSOZ9lOuZJuQbJNatsmkBVuN0hJz4saJa_tEV8gZ81pw2Chp-vjfX9v4v-U_4Ovp1c9O0jnrnm9WXr5lsne3YK4cPeI2fFFPZX882ql35TMo390S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NbULjgY4ytI6O-YEHEFhtHOfXY8lWbaIqlQaob5FjX0q1Num6UKn__S5pQjcEDwgpT4kTRXe27zvffXcAbxOy4iaxXG6hK7lE7fJAdJEjat-3bE_HcUkUHnjDoT8eB6MHLP4y270OSW44DUWVpjTvLEzS2RLfrIJWQvaFFwAk4OsnsCeLRPrCX7_-_iuO4DpCVlSZP7_32BxtMeZvYdHS2vQb__-fh_C8Qpqst5kaL2AH0yY06i4OrFrUTXj2oCThS7gNl9mCVWEbZjAvU7VStpoqRh4vzuMZGm4QF7xqODFhRflwM53MmUoN630KWZitsxzpvr5hGe1J84rsydRski2n-Y85e0fjeDj60nt_BN_6F1_DS161ZeCajPuaa42J66HnKF8YFwlRorQ9X5KvqYUWlhFO7CWu0r7teyjoUl0lLUO6sB1DlvIV7KZZisfAbIVBQHtOEgSJ7KIdE76RRlqiqzzaabAFH2rtRItN9Y1oW2e5kG1Eso1K2UbrFrRrBUbVSryLbMslGENOmtOCj7XCto___rWTfxt-Bk9H5_1ocDX8_BoORNEluDyoacNuvvyJp7CvV_n0bvmmnKD3Kj3l9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+disease+detection+via+ensembled-deep-learning+paradigm+and+ABC+Coyote+pack+optimization+algorithm+%28ABC-CPOA%29&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chithambarathanu%2C+M.&rft.au=Jeyakumar%2C+M.+K.&rft.date=2025-01-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=1&rft.spage=37&rft.epage=62&rft_id=info:doi/10.1007%2Fs11042-024-19329-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_19329_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |