Crop disease detection via ensembled-deep-learning paradigm and ABC Coyote pack optimization algorithm (ABC-CPOA)

Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 84; číslo 1; s. 37 - 62
Hlavní autoři: Chithambarathanu, M., Jeyakumar, M. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2025
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue, this investigate uses an ensembled-deep-learning paradigm to propose a deep learning-based model for crop disease identification trained with an ABC-CPOA. Initially, collected raw images are pre-processed via Bilateral filter and gamma correction Feature Extraction: Then, from the pre-processed images, the features like texture feature (Local Quinary Pattern (LQP), Local Gradient Pattern (LGP), Enriched Local Binary Pattern (E-LBP), color features (Color Histogram, Color Moments), shape features (Contour-based features, Convex Hull). Optimal feature selection- Among the extracted features, the optimal features is designated by means of a self-improved meta-heuristic optimization model referred as ABC-CPOA. This ABC-CPOA model is an extended version of standard Coyote Optimization Algorithm (COA). Crop disease detection phase is modelled with a new ensembled-deep-learning paradigm. Ensembled-deep-learning paradigm comprises Attention-based Bi-LSTM, Recurrent Neural Networks (RNNs) and Optimized Deep Neural Network (O-DNN). The weight function of O-DNN is fine-tuned using the new ABC-CPOA. Precision, recall, sensitivity, and specificity, in addition to TPR, FPR, FNR, and TNR, F1-score, and accuracy are used to assess the suggested approach. The implementation was performed by the MATLAB tool (version: 2022B).
AbstractList Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop diseases have become challenging due to the increase in the variety of diseases and the lack of knowledge among farmers. To address this issue, this investigate uses an ensembled-deep-learning paradigm to propose a deep learning-based model for crop disease identification trained with an ABC-CPOA. Initially, collected raw images are pre-processed via Bilateral filter and gamma correction Feature Extraction: Then, from the pre-processed images, the features like texture feature (Local Quinary Pattern (LQP), Local Gradient Pattern (LGP), Enriched Local Binary Pattern (E-LBP), color features (Color Histogram, Color Moments), shape features (Contour-based features, Convex Hull). Optimal feature selection- Among the extracted features, the optimal features is designated by means of a self-improved meta-heuristic optimization model referred as ABC-CPOA. This ABC-CPOA model is an extended version of standard Coyote Optimization Algorithm (COA). Crop disease detection phase is modelled with a new ensembled-deep-learning paradigm. Ensembled-deep-learning paradigm comprises Attention-based Bi-LSTM, Recurrent Neural Networks (RNNs) and Optimized Deep Neural Network (O-DNN). The weight function of O-DNN is fine-tuned using the new ABC-CPOA. Precision, recall, sensitivity, and specificity, in addition to TPR, FPR, FNR, and TNR, F1-score, and accuracy are used to assess the suggested approach. The implementation was performed by the MATLAB tool (version: 2022B).
Author Jeyakumar, M. K.
Chithambarathanu, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Chithambarathanu
  fullname: Chithambarathanu, M.
  email: chithambaramthanu@gmail.com
  organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education
– sequence: 2
  givenname: M. K.
  surname: Jeyakumar
  fullname: Jeyakumar, M. K.
  organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education
BookMark eNp9kE9LAzEQxYNU0Fa_gKeAFz1Ek-xmsz3WxX9QqAc9h5hMa7SbbJOtsH56oxX0JAzMMLz3hvmN0cgHDwidMHrBKJWXiTFackJ5Sdi04FMy7KFDJmRBpORs9Gc-QOOUXillleDlIdo0MXTYugQ6AbbQg-ld8PjdaQw-Qfu8BkssQEfWoKN3foU7HbV1qxZrb_HsqsFNGEIPeW_ecOh617oP_Z2i16sQXf_S4rOsI83DYnZ-hPaXep3g-KdP0NPN9WNzR-aL2_tmNieG1WIgxsCykiCFrrmtgAkKZSHrsubCcMOZ5eJZLitt6qKWwHNpqktm81uFsIwXE3S6y-1i2Gwh9eo1bKPPJ1XBKspZVVUiq_hOZWJIKcJSddG1Og6KUfWFVu3QqoxWfaNVQzYVO1PKYr-C-Bv9j-sT38t9wA
Cites_doi 10.3390/plants8110468
10.1016/j.compag.2021.106279
10.1007/s00034-019-01041-0
10.1016/j.inpa.2019.11.001
10.1016/j.asoc.2020.106597
10.3390/sym11070939
10.1016/j.bios.2016.09.032
10.1109/ACCESS.2020.2982456
10.1007/s11042-020-08726-8
10.1016/j.compag.2020.105446
10.1016/j.compag.2016.04.032
10.1016/j.micpro.2020.103615
10.1186/s13007-019-0475-z
10.1016/j.compind.2019.02.003
10.1016/j.compag.2019.105093
10.3390/bios5030537
10.1016/j.physa.2019.122537
10.3390/rs9020127
10.1016/j.compag.2018.04.002
10.1016/j.compag.2018.10.006
10.1016/j.compag.2017.09.012
10.1016/j.aiia.2019.09.002
10.1016/j.compag.2019.104948
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-19329-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 62
ExternalDocumentID 10_1007_s11042_024_19329_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c185y-ccef67e75a82d6e150e43784825c2c21d25b7f6ac8387e27e2a0a41d65235d123
IEDL.DBID RSV
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 15:42:20 EST 2025
Sat Nov 29 06:28:17 EST 2025
Fri Feb 21 02:37:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords O-DNN
Crop disease detection
RNN
Attribute based -Bi LSTM
Self-Improved Coyote Optimization Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185y-ccef67e75a82d6e150e43784825c2c21d25b7f6ac8387e27e2a0a41d65235d123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3160216665
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_3160216665
crossref_primary_10_1007_s11042_024_19329_y
springer_journals_10_1007_s11042_024_19329_y
PublicationCentury 2000
PublicationDate 20250100
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Arsenovic (19329_CR5) 2019; 11
KC Kamal (19329_CR24) 2019; 165
M Kerkech (19329_CR15) 2018; 155
Y Fang (19329_CR1) 2015; 5
M Agarwal (19329_CR17) 2020; 28
J Lu (19329_CR25) 2017; 142
S Coulibaly (19329_CR18) 2019; 108
MG Selvaraj (19329_CR13) 2019; 15
M Kerkech (19329_CR6) 2020; 174
A Picon (19329_CR12) 2019; 161
A Khamparia (19329_CR16) 2020; 39
V Singh (19329_CR8) 2017; 4
A Picon (19329_CR22) 2019; 167
RDL Pires (19329_CR23) 2016; 125
A Abbas (19329_CR9) 2021; 187
R Sujatha (19329_CR2) 2021; 80
P Sharma (19329_CR7) 2020; 7
MA Khan (19329_CR21) 2020; 79
S Hernández (19329_CR3) 2020; 96
Y Zhang (19329_CR10) 2020; 8
MH Saleem (19329_CR4) 2019; 8
SG Bajwa (19329_CR20) 2017; 9
M Ray (19329_CR14) 2017; 87
MM Ozguven (19329_CR19) 2019; 535
V Singh (19329_CR11) 2019; 3
References_xml – volume: 8
  start-page: 468
  issue: 11
  year: 2019
  ident: 19329_CR4
  publication-title: Plants
  doi: 10.3390/plants8110468
– volume: 187
  year: 2021
  ident: 19329_CR9
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106279
– volume: 39
  start-page: 818
  year: 2020
  ident: 19329_CR16
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-019-01041-0
– volume: 7
  start-page: 566
  issue: 4
  year: 2020
  ident: 19329_CR7
  publication-title: Information Processing in Agriculture
  doi: 10.1016/j.inpa.2019.11.001
– volume: 28
  year: 2020
  ident: 19329_CR17
  publication-title: Sustain Comput: Inf Syst
– volume: 96
  year: 2020
  ident: 19329_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106597
– volume: 11
  start-page: 939
  issue: 7
  year: 2019
  ident: 19329_CR5
  publication-title: Symmetry
  doi: 10.3390/sym11070939
– volume: 87
  start-page: 708
  year: 2017
  ident: 19329_CR14
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.09.032
– volume: 8
  start-page: 56607
  year: 2020
  ident: 19329_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982456
– volume: 79
  start-page: 18627
  year: 2020
  ident: 19329_CR21
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08726-8
– volume: 174
  year: 2020
  ident: 19329_CR6
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105446
– volume: 125
  start-page: 48
  year: 2016
  ident: 19329_CR23
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.04.032
– volume: 80
  year: 2021
  ident: 19329_CR2
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2020.103615
– volume: 15
  start-page: 1
  year: 2019
  ident: 19329_CR13
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0475-z
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 19329_CR8
  publication-title: Inf Process Agriculture
– volume: 108
  start-page: 115
  year: 2019
  ident: 19329_CR18
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.02.003
– volume: 167
  year: 2019
  ident: 19329_CR22
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105093
– volume: 5
  start-page: 537
  issue: 3
  year: 2015
  ident: 19329_CR1
  publication-title: Biosensors
  doi: 10.3390/bios5030537
– volume: 535
  year: 2019
  ident: 19329_CR19
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122537
– volume: 9
  start-page: 127
  issue: 2
  year: 2017
  ident: 19329_CR20
  publication-title: Remote Sensing
  doi: 10.3390/rs9020127
– volume: 161
  start-page: 280
  year: 2019
  ident: 19329_CR12
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.002
– volume: 155
  start-page: 237
  year: 2018
  ident: 19329_CR15
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.10.006
– volume: 142
  start-page: 369
  year: 2017
  ident: 19329_CR25
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.09.012
– volume: 3
  start-page: 62
  year: 2019
  ident: 19329_CR11
  publication-title: Artif Intell Agriculture
  doi: 10.1016/j.aiia.2019.09.002
– volume: 165
  year: 2019
  ident: 19329_CR24
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.104948
SSID ssj0016524
Score 2.3702576
Snippet Crop disease is a significant issue that affects the growth and yield of crops, leading to financial loss for farmers. Identification and treatment of crop...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Algorithms
Artificial neural networks
Color
Computer Communication Networks
Computer Science
Convexity
Crop diseases
Data Structures and Information Theory
Deep learning
Feature extraction
Heuristic methods
Image filters
Machine learning
Medical imaging
Multimedia Information Systems
Neural networks
Optimization algorithms
Optimization models
Plant diseases
Recurrent neural networks
Shape
Special Purpose and Application-Based Systems
Weighting functions
Title Crop disease detection via ensembled-deep-learning paradigm and ABC Coyote pack optimization algorithm (ABC-CPOA)
URI https://link.springer.com/article/10.1007/s11042-024-19329-y
https://www.proquest.com/docview/3160216665
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGmCgUEAUCvLAAAJLxHk5Y4lADAgqHlW3yLGdUtEmpQ1I_fdcgkMBwQBSpsS2rDvb313O9x3AgcO1YHHhlriuRx2pBA20bdFYeIInBeVbSbvYufKvr3m3G7RNUtikuu1ehSTLk3qW7GYVqSSIKbQwOgI6nYdFhDteFGy4vet8xA48lzkmPebnfl8haGZXfguFlghzUfvf3NZg1ViUpPW-BNZhTqd1qFXVGojZvHVY-UQ9uAHP4TgbEROeIUrn5ZWslLz2BUHPVg_jgVZUaT2iprBEjxQ04arfGxKRKtI6C0mYTbNc43v5RDI8e4YmqZOIQS8b9_PHITnEdjRs37SONuHh4vw-vKSm_AKVCOJTKqVOPF_7ruBMeRotR-3YPnfQp5RMMksxN_YTT0huc18zfMSpcCyF8rddhYi4BQtpluptIFIxIdEzsRPhImrGXNgcO1tCJTyIVdCA40oj0eidZSOa8SkXso1QtlEp22jagGaltMjsuElkWx6aK-iMuQ04qZQ0-_z7aDt_a74Ly6woAVz-hWnCQj5-0XuwJF_z_mS8X67EN-0P2oc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN2I8c-AAgkg0faXHUYFAjIF4iVuVJumYYO3YCtL-PW5JGSA4gNRTm0SRneSz6_gzwLbDtWBx4Za4rkcdqQQNtG3RWHiCJwXlW0m7eNfwm01-fx9cmqSwfnXbvQpJlif1MNnNKlJJEFNoYXQEdDAK4w4iVsGYf3V99xE78FzmmPSYn_t9haChXfktFFoizPHs_-Y2BzPGoiT19yUwDyM6XYDZqloDMZt3AaY_UQ8uwnPYy7rEhGeI0nl5JSslr21B0LPVnfhJK6q07lJTWKJFCppw1W51iEgVqR-GJMwGWa7xvXwkGZ49HZPUScRTK-u184cO2cF2NLy8qO8uwe3x0U14Qk35BSoRxAdUSp14vvZdwZnyNFqO2rF97qBPKZlklmJu7CeekNzmvmb4iAPhWArlb7sKEXEZxtIs1StApGJComdiJ8JF1Iy5sDl2toRKeBCroAZ7lUai7jvLRjTkUy5kG6Fso1K20aAG65XSIrPj-pFteWiuoDPm1mC_UtLw8--jrf6t-RZMntycN6LGafNsDaZYUQ64_COzDmN570VvwIR8zdv93ma5Kt8ANL3daw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0goOvBZEoSw-cNgVWCXOyzmWQLWIqlRaQNwix3ZKBU1KCUj994zThMIKDggpp8SOohk7M59n5huAfYdrwWIDS1zXo45UggbatmgsPMETQ_lW0C5et_1Oh9_cBN03VfxFtnsVkpzUNBiWpjRvDFXSmBa-WaasBO0LNQ5IQMezMO-YRHqD1_9dv8YRPJc5ZanMx_Pem6Opj_lfWLSwNq2V73_nKiyXniZpTpbGGszodB1Wqi4OpNzU67D0hpLwJzyEo2xIyrANUTovUrVS8twXBBGvHsT3WlGl9ZCWDSd6xNCHq35vQESqSPM4JGE2znKN9-UdyfCfNCiLPYm472Wjfn47IL9xHA27F80_G3DVOr0M_9KyLQOVaNzHVEqdeL72XcGZ8jR6lNqxfe4g1pRMMksxN_YTT0huc18zvMSRcCyFurBdhZZyE-bSLNVbQKRiQiJisRPhojWNubA5TraESngQq6AGB5V2ouGEfSOa8iwb2UYo26iQbTSuQb1SYFTuxMfItjx0YxCkuTU4rBQ2ffz527a_NnwPfnRPWlH7rHO-A4vMdAkuDmrqMJePnvQuLMjnvP84-lUs0BcmjOZP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+disease+detection+via+ensembled-deep-learning+paradigm+and+ABC+Coyote+pack+optimization+algorithm+%28ABC-CPOA%29&rft.jtitle=Multimedia+tools+and+applications&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=1&rft.spage=37&rft.epage=62&rft_id=info:doi/10.1007%2Fs11042-024-19329-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon