Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace
This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on t...
Saved in:
| Published in: | Neural computing & applications Vol. 37; no. 17; pp. 10425 - 10438 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms
L
1
and
L
2
are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance. |
|---|---|
| AbstractList | This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms L1 and L2 are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance. This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms L 1 and L 2 are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance. |
| Author | Ou, Zihui Zhou, Ping Chai, Tianyou Zhao, Peng |
| Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0002-9398-172X surname: Zhou fullname: Zhou, Ping email: zhouping@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University – sequence: 2 givenname: Peng surname: Zhao fullname: Zhao, Peng organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University – sequence: 3 givenname: Zihui surname: Ou fullname: Ou, Zihui organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University – sequence: 4 givenname: Tianyou surname: Chai fullname: Chai, Tianyou organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcB19G8ZjqzlGJVKAq-tiGTuSmp00mbzJTWX29qBXeuLufecw6Xb4QGrW8BoUtGrxmlk5tIacYZoVwSRjNRkt0JGjIpBBE0KwZoSEuZzrkUZ2gU45JSKvMiG6Lta6fNJ9Q4wsqR2K8hbF1MWvedh9b4GgIJsOgbHdxX2r98zOZPEVsfcIDG6aoBvA5QO9M532Jv8co3HbTYhSQ3vW5ct8euxVWjY4dtH1pt4BydWt1EuPidY_Q-u3ubPpD58_3j9HZODCuyHakZCCaslJzVXMqyYrbKCsNpzvMJaG0o1LmorC1srrmRheZ1VSY3z5jlEy7G6OrYuw5-00Ps1NIfPmiiEpxJznPGRXLxo8sEH2MAq9bBrXTYK0bVga868lWJr_rhq3YpJI6hmMztAsJf9T-pbz7cge0 |
| Cites_doi | 10.7641/CTA.2019.90088 10.1109/TII.2021.3084911 10.3724/SP.J.1004.2009.00725 10.16383/j.aas.2016.c150574 10.4028/www.scientific.net/MSF.869.572 10.1016/j.eswa.2009.04.015 10.1080/24694452.2018.1425129 10.1109/TNNLS.2021.3059784 10.1109/TIE.2019.2903770 10.1109/TCST.2016.2631124 10.18637/jss.v033.i01 10.1016/j.conengprac.2020.104633 10.1109/TII.2018.2809730 10.11897/SP.J.1016.2019.00203 10.3390/met13050918 10.1631/FITEE.1900116 10.1109/TIE.2020.3031525 10.1109/2.144401 10.3390/W13091173 10.1109/JSTARS.2014.2329330 10.1016/0010-0285(80)90005-5 10.1109/TMM.2020.3007321 10.1016/j.ins.2012.10.017 10.1016/j.compchemeng.2019.106575 10.1109/TNNLS.2017.2749412 10.16383/j.aas.2018.c170299 10.1155/2019/6403081 10.1109/TCSII.2022.3160266 10.3390/s22020615 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-024-10539-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 10438 |
| ExternalDocumentID | 10_1007_s00521_024_10539_x |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: U22A2049 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PMFND PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB |
| ID | FETCH-LOGICAL-c185x-d1e313f4421d2449b1fb58c206267eaac0ed63bff8f6a2c48a2db9421251f2723 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 06:25:09 EST 2025 Sat Nov 29 07:48:36 EST 2025 Sun Jun 01 01:14:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | Attention mechanism Random vector functional-link networks (RVFLNs) Blast furnace (BF) ironmaking Stacked semi-supervised autoencoder Reliable prediction of molten iron quality (MIQ) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c185x-d1e313f4421d2449b1fb58c206267eaac0ed63bff8f6a2c48a2db9421251f2723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9398-172X |
| PQID | 3214226123 |
| PQPubID | 2043988 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3214226123 crossref_primary_10_1007_s00521_024_10539_x springer_journals_10_1007_s00521_024_10539_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | M Treisman Anne (10539_CR21) 1980; 12 H Zhou (10539_CR5) 2020; 67 P Zhou (10539_CR11) 2018; 44 P Zhou (10539_CR3) 2020; 105 X Zhang (10539_CR16) 2019; 130 C Gao (10539_CR6) 2009; 35 Y Chen (10539_CR25) 2014; 7 K Jiang (10539_CR2) 2022; 18 K Li (10539_CR26) 2018; 108 J Song (10539_CR10) 2023; 13 A Bile (10539_CR19) 2022; 22 SF David (10539_CR9) 2016; 869 F Yuan (10539_CR23) 2019; 42 X Tang (10539_CR8) 2009; 36 X Yuan (10539_CR17) 2018; 14 R Sarkar (10539_CR20) 2019 P Zhou (10539_CR1) 2017; 25 X Wang (10539_CR14) 2022; 33 P Zhou (10539_CR28) 2018; 29 P Filzmoser (10539_CR4) 2013; 245 NF Di (10539_CR18) 2021; 13 G Li (10539_CR29) 2021; 69 YH Pao (10539_CR12) 1992; 25 J Liu (10539_CR13) 2020; 37 Q Lai (10539_CR22) 2021; 23 L Hou (10539_CR24) 2020; 21 Z Jiang (10539_CR7) 2016; 42 J Li (10539_CR15) 2021; 68 J Friedman (10539_CR27) 2010; 33 |
| References_xml | – volume: 37 start-page: 987 issue: 5 year: 2020 ident: 10539_CR13 publication-title: Control Theory Appl doi: 10.7641/CTA.2019.90088 – volume: 18 start-page: 1854 issue: 3 year: 2022 ident: 10539_CR2 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3084911 – volume: 35 start-page: 725 issue: 6 year: 2009 ident: 10539_CR6 publication-title: Acta Automatica Sinica doi: 10.3724/SP.J.1004.2009.00725 – volume: 42 start-page: 715 issue: 5 year: 2016 ident: 10539_CR7 publication-title: Acta Automatica Sinica doi: 10.16383/j.aas.2016.c150574 – volume: 869 start-page: 572 issue: 1 year: 2016 ident: 10539_CR9 publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.869.572 – volume: 36 start-page: 11853 issue: 9 year: 2009 ident: 10539_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.015 – volume: 108 start-page: 1582 issue: 6 year: 2018 ident: 10539_CR26 publication-title: Ann Am Assoc Geogr doi: 10.1080/24694452.2018.1425129 – volume: 33 start-page: 2080 issue: 5 year: 2022 ident: 10539_CR14 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3059784 – volume: 67 start-page: 2469 issue: 3 year: 2020 ident: 10539_CR5 publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2019.2903770 – volume: 25 start-page: 1761 issue: 5 year: 2017 ident: 10539_CR1 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2016.2631124 – volume: 33 start-page: 21 issue: 1 year: 2010 ident: 10539_CR27 publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 105 year: 2020 ident: 10539_CR3 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2020.104633 – volume: 14 start-page: 3235 issue: 7 year: 2018 ident: 10539_CR17 publication-title: IEEE Trans Ind Informa-tics doi: 10.1109/TII.2018.2809730 – volume: 42 start-page: 203 issue: 1 year: 2019 ident: 10539_CR23 publication-title: Chin J Comput doi: 10.11897/SP.J.1016.2019.00203 – volume: 13 start-page: 918 issue: 5 year: 2023 ident: 10539_CR10 publication-title: Metals doi: 10.3390/met13050918 – volume: 21 start-page: 1005 issue: 7 year: 2020 ident: 10539_CR24 publication-title: Front Inf Technol Electron Eng doi: 10.1631/FITEE.1900116 – volume: 68 start-page: 11309 issue: 11 year: 2021 ident: 10539_CR15 publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2020.3031525 – volume: 25 start-page: 76 issue: 5 year: 1992 ident: 10539_CR12 publication-title: Computer doi: 10.1109/2.144401 – volume: 13 start-page: 1173 issue: 9 year: 2021 ident: 10539_CR18 publication-title: Water doi: 10.3390/W13091173 – volume: 7 start-page: 2094 issue: 6 year: 2014 ident: 10539_CR25 publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens doi: 10.1109/JSTARS.2014.2329330 – volume: 12 start-page: 97 issue: 1 year: 1980 ident: 10539_CR21 publication-title: Cogn Psychol doi: 10.1016/0010-0285(80)90005-5 – volume: 23 start-page: 2086 year: 2021 ident: 10539_CR22 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2020.3007321 – volume: 245 start-page: 4 year: 2013 ident: 10539_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2012.10.017 – volume: 130 year: 2019 ident: 10539_CR16 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106575 – volume: 29 start-page: 4007 issue: 9 year: 2018 ident: 10539_CR28 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2749412 – volume: 44 start-page: 1799 issue: 10 year: 2018 ident: 10539_CR11 publication-title: Acta Automatica Sinica doi: 10.16383/j.aas.2018.c170299 – year: 2019 ident: 10539_CR20 publication-title: Math Probl Eng doi: 10.1155/2019/6403081 – volume: 69 start-page: 2413 issue: 5 year: 2021 ident: 10539_CR29 publication-title: IEEE Trans Circuits Syst II Expr Briefs doi: 10.1109/TCSII.2022.3160266 – volume: 22 start-page: 615 issue: 2 year: 2022 ident: 10539_CR19 publication-title: Sensors doi: 10.3390/s22020615 |
| SSID | ssj0004685 |
| Score | 2.3819463 |
| Snippet | This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 10425 |
| SubjectTerms | Algorithms Artificial Intelligence Coal Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Consumption Data Mining and Knowledge Discovery Distributed control systems High temperature Image Processing and Computer Vision Iron Iron compounds Ironmaking Neural networks Prediction models Probability and Statistics in Computer Science Process variables Regularization S.I.: Timely Advances of Deep Learning with applications and Data-Driven Modeling Special Issue on Timely Advances of Deep Learning with applications and Data-Driven Modeling Sulfur content Variables |
| Title | Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace |
| URI | https://link.springer.com/article/10.1007/s00521-024-10539-x https://www.proquest.com/docview/3214226123 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGmiSfh5FHB7GkKljt9I0CRS2dbTdmP71vmTtpqIHvTVtCeG9vLxf8vJ7D6FrJlnAeEBJEDkhcSORkEhQDwyPitBXXASJ1XQv6PfD0Sh6qklhZXPbvQlJ2pV6TXYzJ5iw9WUuLB0ejwggxx1wd6Exx8Hz8BMb0hbihH2LudPj8poq83MfX93RBmN-C4tab9Nt_W-cB2i_Rpf4bjUdDtGWmh6hVlO5AdeGfIwWgDHBfCUu1SQj5XxmVowS2sm8yk1qS6kKUtgy9UX2Du8Hw26vX2JAuLhQ48zwrfCsMEEeo1icazzJxwC_sWHN4RVT8w1nUywAnVdYm3Gl6gS9dh9e7h9JXYGBpODHl0RSxSnXrsuoBBwAWtTCC1PmwDYoUEmSOkr6XGgdaj9hqRsmTIrIBJk9qs0kOEXb03yqzhAGqCUdJ6VKRMIVEvoJKDwBWhB-AO02umkUEc9WiTbidUplK9IYRBpbkcbLNuo0uoproytjU3OJmZRovI1uG91sPv_e2_nffr9Ae8xUAbZnMR20XRVzdYl200WVlcWVnYwfHUbbcw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5800Cbfj-KOCbOInOOvZWmSaGwtaPtxvSv95K1m4o-6FvTlhDucrlfcvndIXRFOXWo4ejE8TSXmB4Licd0CwxPZ64tDOaEStM9x_fd0ch7rkhhRX3bvQ5JqpV6RXaTJ5iw9aUmLB2W4RFAjpsmeCx5ka__MvzEhlSFOGHfIu_0mEZFlfm5j6_uaI0xv4VFlbfpNP83zj20W6FLfLucDvtoQ6QHqFlXbsCVIR-iOWBMMF-OCzFJSDGbyhWjgHY4KzOZ2pKLnOSqTH2evMP7_rDT8wsMCBfnYpxIvhWe5jLIIxWLsxhPsjHAbyxZc3jJ1HzDSYoZoPMSx3JckThCr537wV2XVBUYSAR-fEG4LgzdiE0QMwccAFqMmeVGVINtkCPCMNIEtw0Wx25shzQy3ZBy5skgs6XHchIco0aapeIEYYBaXNMiXTCPmYxDP44OT4AWmO1Au4Wua0UE02WijWCVUlmJNACRBkqkwaKF2rWugsroikDWXKIyJZrRQje1btaff-_t9G-_X6Lt7uCpF_Qe_McztENlRWB1LtNGjTKfiXO0Fc3LpMgv1MT8AG-n3lc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXzxW5yfefBNw5q0W9tHUYfiGOIXvpWmSaCwdaPthvrXe5e1fqEP4lvTlhDucsnvcvndEXIklPCF63Pmh07AvFDGLJS8DYbHZdDRrvRjq-me3-8HT0_hzScWv73tXockZ5wGzNKUla2xMq134hueZoIbLDxYRtpuyABFzntYNAj99bvHT8xIW5QTfBi83-O5FW3m5z6-bk0fePNbiNTuPN2V_495lSxXqJOezqbJGpnT2TpZqSs60MrAN8gUsCeYtaKFHqasmIxxJSmgHU_KEaa8VDpnuS1fn6ev8P72sdvrFxSQL831IEUeFh3nGPxBhdORocPRAAZJkU1HZwzOF5pmVAJqL6nBcSV6kzx0L-7PLllVmYElsL8_M8W1y13jeYIrwAegXSPbQSIccI98HceJo1XHlcYEphOLxAtioWSIwec2Nzg5tkgjG2V6m1CAYMpxEq5lKD2poB-fwxOgCNnxod0kx7VSovEsAUf0nmrZijQCkUZWpNFzk-zVeosqYywirMUkMFWa2yQntZ4-Pv_e287ffj8kizfn3ah31b_eJUsCCwXb45o90ijzid4nC8m0TIv8wM7RN06_5zs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+semi-supervised+autoencoder-regularized+RVFLNs+for+reliable+prediction+of+molten+iron+quality+in+blast+furnace&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=17&rft.spage=10425&rft.epage=10438&rft_id=info:doi/10.1007%2Fs00521-024-10539-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |