Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace

This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on t...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 37; no. 17; pp. 10425 - 10438
Main Authors: Zhou, Ping, Zhao, Peng, Ou, Zihui, Chai, Tianyou
Format: Journal Article
Language:English
Published: London Springer London 01.06.2025
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms L 1 and L 2 are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance.
AbstractList This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms L1 and L2 are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance.
This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten iron quality (MIQ) in blast furnace (BF) ironmaking. First, in order to accurately describe the importance of different process variables on the multivariate MIQ indices, an attention mechanism based on feedforward compensation is introduced. The mechanism is embedded at the front end of the stacked semi-supervised autoencoder deep network. Secondly, to extract the deep feature information which is closely related to the prediction target from the process data, a deep network structure composed of multiple semi-supervised autoencoder models is introduced. The output of the last hidden layer is then used as the input of the subsequent prediction model. At the same time, two regularization terms L 1 and L 2 are incorporated into RVFLNs to sparse network output weights and improve the robustness of modeling, aiming to solve the multicollinearity and overfitting problems of the basic RVFLNs. Experiments using the standard dataset and actual industrial data of BF demonstrate that the proposed method has good performance.
Author Ou, Zihui
Zhou, Ping
Chai, Tianyou
Zhao, Peng
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0002-9398-172X
  surname: Zhou
  fullname: Zhou, Ping
  email: zhouping@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University
– sequence: 2
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University
– sequence: 3
  givenname: Zihui
  surname: Ou
  fullname: Ou, Zihui
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University
– sequence: 4
  givenname: Tianyou
  surname: Chai
  fullname: Chai, Tianyou
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University
BookMark eNp9kEtLAzEUhYNUsK3-AVcB19G8ZjqzlGJVKAq-tiGTuSmp00mbzJTWX29qBXeuLufecw6Xb4QGrW8BoUtGrxmlk5tIacYZoVwSRjNRkt0JGjIpBBE0KwZoSEuZzrkUZ2gU45JSKvMiG6Lta6fNJ9Q4wsqR2K8hbF1MWvedh9b4GgIJsOgbHdxX2r98zOZPEVsfcIDG6aoBvA5QO9M532Jv8co3HbTYhSQ3vW5ct8euxVWjY4dtH1pt4BydWt1EuPidY_Q-u3ubPpD58_3j9HZODCuyHakZCCaslJzVXMqyYrbKCsNpzvMJaG0o1LmorC1srrmRheZ1VSY3z5jlEy7G6OrYuw5-00Ps1NIfPmiiEpxJznPGRXLxo8sEH2MAq9bBrXTYK0bVga868lWJr_rhq3YpJI6hmMztAsJf9T-pbz7cge0
Cites_doi 10.7641/CTA.2019.90088
10.1109/TII.2021.3084911
10.3724/SP.J.1004.2009.00725
10.16383/j.aas.2016.c150574
10.4028/www.scientific.net/MSF.869.572
10.1016/j.eswa.2009.04.015
10.1080/24694452.2018.1425129
10.1109/TNNLS.2021.3059784
10.1109/TIE.2019.2903770
10.1109/TCST.2016.2631124
10.18637/jss.v033.i01
10.1016/j.conengprac.2020.104633
10.1109/TII.2018.2809730
10.11897/SP.J.1016.2019.00203
10.3390/met13050918
10.1631/FITEE.1900116
10.1109/TIE.2020.3031525
10.1109/2.144401
10.3390/W13091173
10.1109/JSTARS.2014.2329330
10.1016/0010-0285(80)90005-5
10.1109/TMM.2020.3007321
10.1016/j.ins.2012.10.017
10.1016/j.compchemeng.2019.106575
10.1109/TNNLS.2017.2749412
10.16383/j.aas.2018.c170299
10.1155/2019/6403081
10.1109/TCSII.2022.3160266
10.3390/s22020615
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10539-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 10438
ExternalDocumentID 10_1007_s00521_024_10539_x
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: U22A2049
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PMFND
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
ID FETCH-LOGICAL-c185x-d1e313f4421d2449b1fb58c206267eaac0ed63bff8f6a2c48a2db9421251f2723
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 06:25:09 EST 2025
Sat Nov 29 07:48:36 EST 2025
Sun Jun 01 01:14:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Attention mechanism
Random vector functional-link networks (RVFLNs)
Blast furnace (BF) ironmaking
Stacked semi-supervised autoencoder
Reliable prediction of molten iron quality (MIQ)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185x-d1e313f4421d2449b1fb58c206267eaac0ed63bff8f6a2c48a2db9421251f2723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9398-172X
PQID 3214226123
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_3214226123
crossref_primary_10_1007_s00521_024_10539_x
springer_journals_10_1007_s00521_024_10539_x
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References M Treisman Anne (10539_CR21) 1980; 12
H Zhou (10539_CR5) 2020; 67
P Zhou (10539_CR11) 2018; 44
P Zhou (10539_CR3) 2020; 105
X Zhang (10539_CR16) 2019; 130
C Gao (10539_CR6) 2009; 35
Y Chen (10539_CR25) 2014; 7
K Jiang (10539_CR2) 2022; 18
K Li (10539_CR26) 2018; 108
J Song (10539_CR10) 2023; 13
A Bile (10539_CR19) 2022; 22
SF David (10539_CR9) 2016; 869
F Yuan (10539_CR23) 2019; 42
X Tang (10539_CR8) 2009; 36
X Yuan (10539_CR17) 2018; 14
R Sarkar (10539_CR20) 2019
P Zhou (10539_CR1) 2017; 25
X Wang (10539_CR14) 2022; 33
P Zhou (10539_CR28) 2018; 29
P Filzmoser (10539_CR4) 2013; 245
NF Di (10539_CR18) 2021; 13
G Li (10539_CR29) 2021; 69
YH Pao (10539_CR12) 1992; 25
J Liu (10539_CR13) 2020; 37
Q Lai (10539_CR22) 2021; 23
L Hou (10539_CR24) 2020; 21
Z Jiang (10539_CR7) 2016; 42
J Li (10539_CR15) 2021; 68
J Friedman (10539_CR27) 2010; 33
References_xml – volume: 37
  start-page: 987
  issue: 5
  year: 2020
  ident: 10539_CR13
  publication-title: Control Theory Appl
  doi: 10.7641/CTA.2019.90088
– volume: 18
  start-page: 1854
  issue: 3
  year: 2022
  ident: 10539_CR2
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3084911
– volume: 35
  start-page: 725
  issue: 6
  year: 2009
  ident: 10539_CR6
  publication-title: Acta Automatica Sinica
  doi: 10.3724/SP.J.1004.2009.00725
– volume: 42
  start-page: 715
  issue: 5
  year: 2016
  ident: 10539_CR7
  publication-title: Acta Automatica Sinica
  doi: 10.16383/j.aas.2016.c150574
– volume: 869
  start-page: 572
  issue: 1
  year: 2016
  ident: 10539_CR9
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.869.572
– volume: 36
  start-page: 11853
  issue: 9
  year: 2009
  ident: 10539_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.015
– volume: 108
  start-page: 1582
  issue: 6
  year: 2018
  ident: 10539_CR26
  publication-title: Ann Am Assoc Geogr
  doi: 10.1080/24694452.2018.1425129
– volume: 33
  start-page: 2080
  issue: 5
  year: 2022
  ident: 10539_CR14
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3059784
– volume: 67
  start-page: 2469
  issue: 3
  year: 2020
  ident: 10539_CR5
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/TIE.2019.2903770
– volume: 25
  start-page: 1761
  issue: 5
  year: 2017
  ident: 10539_CR1
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2016.2631124
– volume: 33
  start-page: 21
  issue: 1
  year: 2010
  ident: 10539_CR27
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 105
  year: 2020
  ident: 10539_CR3
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2020.104633
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  ident: 10539_CR17
  publication-title: IEEE Trans Ind Informa-tics
  doi: 10.1109/TII.2018.2809730
– volume: 42
  start-page: 203
  issue: 1
  year: 2019
  ident: 10539_CR23
  publication-title: Chin J Comput
  doi: 10.11897/SP.J.1016.2019.00203
– volume: 13
  start-page: 918
  issue: 5
  year: 2023
  ident: 10539_CR10
  publication-title: Metals
  doi: 10.3390/met13050918
– volume: 21
  start-page: 1005
  issue: 7
  year: 2020
  ident: 10539_CR24
  publication-title: Front Inf Technol Electron Eng
  doi: 10.1631/FITEE.1900116
– volume: 68
  start-page: 11309
  issue: 11
  year: 2021
  ident: 10539_CR15
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/TIE.2020.3031525
– volume: 25
  start-page: 76
  issue: 5
  year: 1992
  ident: 10539_CR12
  publication-title: Computer
  doi: 10.1109/2.144401
– volume: 13
  start-page: 1173
  issue: 9
  year: 2021
  ident: 10539_CR18
  publication-title: Water
  doi: 10.3390/W13091173
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 10539_CR25
  publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens
  doi: 10.1109/JSTARS.2014.2329330
– volume: 12
  start-page: 97
  issue: 1
  year: 1980
  ident: 10539_CR21
  publication-title: Cogn Psychol
  doi: 10.1016/0010-0285(80)90005-5
– volume: 23
  start-page: 2086
  year: 2021
  ident: 10539_CR22
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.3007321
– volume: 245
  start-page: 4
  year: 2013
  ident: 10539_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.10.017
– volume: 130
  year: 2019
  ident: 10539_CR16
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106575
– volume: 29
  start-page: 4007
  issue: 9
  year: 2018
  ident: 10539_CR28
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2749412
– volume: 44
  start-page: 1799
  issue: 10
  year: 2018
  ident: 10539_CR11
  publication-title: Acta Automatica Sinica
  doi: 10.16383/j.aas.2018.c170299
– year: 2019
  ident: 10539_CR20
  publication-title: Math Probl Eng
  doi: 10.1155/2019/6403081
– volume: 69
  start-page: 2413
  issue: 5
  year: 2021
  ident: 10539_CR29
  publication-title: IEEE Trans Circuits Syst II Expr Briefs
  doi: 10.1109/TCSII.2022.3160266
– volume: 22
  start-page: 615
  issue: 2
  year: 2022
  ident: 10539_CR19
  publication-title: Sensors
  doi: 10.3390/s22020615
SSID ssj0004685
Score 2.3819463
Snippet This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10425
SubjectTerms Algorithms
Artificial Intelligence
Coal
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Consumption
Data Mining and Knowledge Discovery
Distributed control systems
High temperature
Image Processing and Computer Vision
Iron
Iron compounds
Ironmaking
Neural networks
Prediction models
Probability and Statistics in Computer Science
Process variables
Regularization
S.I.: Timely Advances of Deep Learning with applications and Data-Driven Modeling
Special Issue on Timely Advances of Deep Learning with applications and Data-Driven Modeling
Sulfur content
Variables
Title Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace
URI https://link.springer.com/article/10.1007/s00521-024-10539-x
https://www.proquest.com/docview/3214226123
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGmiSfh5FHB7GkKljt9I0CRS2dbTdmP71vmTtpqIHvTVtCeG9vLxf8vJ7D6FrJlnAeEBJEDkhcSORkEhQDwyPitBXXASJ1XQv6PfD0Sh6qklhZXPbvQlJ2pV6TXYzJ5iw9WUuLB0ejwggxx1wd6Exx8Hz8BMb0hbihH2LudPj8poq83MfX93RBmN-C4tab9Nt_W-cB2i_Rpf4bjUdDtGWmh6hVlO5AdeGfIwWgDHBfCUu1SQj5XxmVowS2sm8yk1qS6kKUtgy9UX2Du8Hw26vX2JAuLhQ48zwrfCsMEEeo1icazzJxwC_sWHN4RVT8w1nUywAnVdYm3Gl6gS9dh9e7h9JXYGBpODHl0RSxSnXrsuoBBwAWtTCC1PmwDYoUEmSOkr6XGgdaj9hqRsmTIrIBJk9qs0kOEXb03yqzhAGqCUdJ6VKRMIVEvoJKDwBWhB-AO02umkUEc9WiTbidUplK9IYRBpbkcbLNuo0uoproytjU3OJmZRovI1uG91sPv_e2_nffr9Ae8xUAbZnMR20XRVzdYl200WVlcWVnYwfHUbbcw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5800Cbfj-KOCbOInOOvZWmSaGwtaPtxvSv95K1m4o-6FvTlhDucrlfcvndIXRFOXWo4ejE8TSXmB4Licd0CwxPZ64tDOaEStM9x_fd0ch7rkhhRX3bvQ5JqpV6RXaTJ5iw9aUmLB2W4RFAjpsmeCx5ka__MvzEhlSFOGHfIu_0mEZFlfm5j6_uaI0xv4VFlbfpNP83zj20W6FLfLucDvtoQ6QHqFlXbsCVIR-iOWBMMF-OCzFJSDGbyhWjgHY4KzOZ2pKLnOSqTH2evMP7_rDT8wsMCBfnYpxIvhWe5jLIIxWLsxhPsjHAbyxZc3jJ1HzDSYoZoPMSx3JckThCr537wV2XVBUYSAR-fEG4LgzdiE0QMwccAFqMmeVGVINtkCPCMNIEtw0Wx25shzQy3ZBy5skgs6XHchIco0aapeIEYYBaXNMiXTCPmYxDP44OT4AWmO1Au4Wua0UE02WijWCVUlmJNACRBkqkwaKF2rWugsroikDWXKIyJZrRQje1btaff-_t9G-_X6Lt7uCpF_Qe_McztENlRWB1LtNGjTKfiXO0Fc3LpMgv1MT8AG-n3lc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXzxW5yfefBNw5q0W9tHUYfiGOIXvpWmSaCwdaPthvrXe5e1fqEP4lvTlhDucsnvcvndEXIklPCF63Pmh07AvFDGLJS8DYbHZdDRrvRjq-me3-8HT0_hzScWv73tXockZ5wGzNKUla2xMq134hueZoIbLDxYRtpuyABFzntYNAj99bvHT8xIW5QTfBi83-O5FW3m5z6-bk0fePNbiNTuPN2V_495lSxXqJOezqbJGpnT2TpZqSs60MrAN8gUsCeYtaKFHqasmIxxJSmgHU_KEaa8VDpnuS1fn6ev8P72sdvrFxSQL831IEUeFh3nGPxBhdORocPRAAZJkU1HZwzOF5pmVAJqL6nBcSV6kzx0L-7PLllVmYElsL8_M8W1y13jeYIrwAegXSPbQSIccI98HceJo1XHlcYEphOLxAtioWSIwec2Nzg5tkgjG2V6m1CAYMpxEq5lKD2poB-fwxOgCNnxod0kx7VSovEsAUf0nmrZijQCkUZWpNFzk-zVeosqYywirMUkMFWa2yQntZ4-Pv_e287ffj8kizfn3ah31b_eJUsCCwXb45o90ijzid4nC8m0TIv8wM7RN06_5zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+semi-supervised+autoencoder-regularized+RVFLNs+for+reliable+prediction+of+molten+iron+quality+in+blast+furnace&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=17&rft.spage=10425&rft.epage=10438&rft_id=info:doi/10.1007%2Fs00521-024-10539-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon