Study of Evolutionary Algorithms for Multi-objective Optimization
There are two prominent principles of any information retrieval system precision and analysis. Precision is the proportion of correct documents retrieved by the information retrieval system to the total number of archives retrieved in the perspective of a client's inquiry. Analysis includes the...
Saved in:
| Published in: | SN computer science Vol. 3; no. 5; p. 409 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.09.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There are two prominent principles of any information retrieval system precision and analysis. Precision is the proportion of correct documents retrieved by the information retrieval system to the total number of archives retrieved in the perspective of a client's inquiry. Analysis includes the way these documents are expected to be retrieved by the client. Predicting the documents that the user might need in the upcoming time is also crucial. Having the list of multiple objectives in the user query and getting the optimum result adhering to the objectives are important these days where we can make use of evolutionary algorithms which provides set of solutions to the problem. We present here in this paper study of useful multi-objective optimization algorithms, recent developments in multi-objective evolutionary algorithms, and literature which have used these algorithms. Further, we discussed our proposed system where we will make use of the knowledge gained from this examination. |
|---|---|
| AbstractList | There are two prominent principles of any information retrieval system precision and analysis. Precision is the proportion of correct documents retrieved by the information retrieval system to the total number of archives retrieved in the perspective of a client's inquiry. Analysis includes the way these documents are expected to be retrieved by the client. Predicting the documents that the user might need in the upcoming time is also crucial. Having the list of multiple objectives in the user query and getting the optimum result adhering to the objectives are important these days where we can make use of evolutionary algorithms which provides set of solutions to the problem. We present here in this paper study of useful multi-objective optimization algorithms, recent developments in multi-objective evolutionary algorithms, and literature which have used these algorithms. Further, we discussed our proposed system where we will make use of the knowledge gained from this examination. |
| ArticleNumber | 409 |
| Author | Gaikwad, Rama Lakshmanan, Ramanathan |
| Author_xml | – sequence: 1 givenname: Rama surname: Gaikwad fullname: Gaikwad, Rama organization: School of Computer Science & Engineering, Vellore Institute of Technology – sequence: 2 givenname: Ramanathan orcidid: 0000-0002-1532-5495 surname: Lakshmanan fullname: Lakshmanan, Ramanathan email: lramanathan@vit.ac.in organization: School of Computer Science & Engineering, Vellore Institute of Technology |
| BookMark | eNp9kD1PwzAQhi1UJErpH2CKxGw423Fij1VVPqSiDsBsJY5dXKVxsZOq5deTEiSYmO6G531P91yiUeMbg9A1gVsCkN_FlMpcYqAUA6GC4cMZGtMsI1hIyEd_9gs0jXEDAJRDmmZ8jGYvbVcdE2-Txd7XXet8U4RjMqvXPrj2fRsT60Py3NWtw77cGN26vUlWu9Zt3Wdxwq_QuS3qaKY_c4Le7hev80e8XD08zWdLrIngB5yTKrUsNVZorSUYIipJLYcqp4ZTKDMBOuOFzphNC6s510JaI0XOS1uWFWETdDP07oL_6Exs1cZ3oelPKioZI5nggvcUHSgdfIzBWLULbtu_pAioky012FK9LfVtSx36EBtCsYebtQm_1f-kvgCmG3Am |
| Cites_doi | 10.1016/j.eswa.2014.04.033 10.1007/s11042-020-10139-6 10.1007/s10791-017-9295-9 10.1109/ACCESS.2019.2923583 10.1007/s10916-016-0603-5 10.1109/ACCESS.2019.2960285 10.1109/ACCESS.2019.2937339 10.1162/evco.1994.2.3.221 10.1016/j.ins.2018.10.034 10.1016/j.eswa.2017.10.042 10.1109/ACCESS.2019.2950045 10.1007/978-94-011-1804-0_10 10.1016/j.asoc.2017.11.016 10.1145/383952.383970 10.1145/1569901.1569904 10.1007/978-3-642-37899-7_16 10.1145/3077136.3082067 10.1109/ICEC.1994.350037 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-022-01283-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: AAdvanced Technologies & Aerospace Database (subscription) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_022_01283_x |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c185x-71d4f34ef8ccc90e18d92f50d72e520b680c65ac63f4afc55c89fe9875bfbbd13 |
| IEDL.DBID | RSV |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 14:49:06 EST 2025 Sat Nov 29 05:16:51 EST 2025 Fri Feb 21 02:45:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Information retrieval systems Multi-objective evolutionary algorithms Query learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c185x-71d4f34ef8ccc90e18d92f50d72e520b680c65ac63f4afc55c89fe9875bfbbd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1532-5495 |
| PQID | 2933168585 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2933168585 crossref_primary_10_1007_s42979_022_01283_x springer_journals_10_1007_s42979_022_01283_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Schaffer, Grefensette, Lawrence (CR3) 1985 Katoch, Chauhan, Kumar (CR4) 2021; 80 Vrajitoru, Crestani, Pasi (CR1) 2000 CR6 Haq, Ul, Hassan (CR18) 2019; 7 CR7 Liang, Yang, Gao, Yue, Ge, Boyang (CR22) 2019; 7 CR15 CR14 Djenouri, Belhadi, Belkebir (CR19) 2018; 94 CR13 CR11 Srinivas, Deb (CR8) 1994; 2 Wang, Yang, Shan, Chen (CR20) 2019; 7 Pratihar (CR2) 2007 Lin, Chen, Wu (CR10) 2014; 41 Cecchini, Lorenzetti, Maguitman, Ponzoni (CR21) 2018; 69 Duari, Bhatnagar (CR17) 2019; 477 Wan, Zheng, Si, Xiong, Zhang, Vasilakos (CR16) 2019; 7 Khennak, Drias (CR9) 2016; 40 Hajela, Lee, Lin, Bendsøe, Soares (CR5) 1993 Ebesu, Fang (CR12) 2017; 20 1283_CR11 B Wang (1283_CR20) 2019; 7 Y Djenouri (1283_CR19) 2018; 94 1283_CR15 1283_CR13 S Duari (1283_CR17) 2019; 477 1283_CR14 J Schaffer (1283_CR3) 1985 J Liang (1283_CR22) 2019; 7 S Katoch (1283_CR4) 2021; 80 T Ebesu (1283_CR12) 2017; 20 MI Haq (1283_CR18) 2019; 7 CH Lin (1283_CR10) 2014; 41 J Wan (1283_CR16) 2019; 7 RL Cecchini (1283_CR21) 2018; 69 P Hajela (1283_CR5) 1993 I Khennak (1283_CR9) 2016; 40 D Vrajitoru (1283_CR1) 2000 N Srinivas (1283_CR8) 1994; 2 1283_CR7 DK Pratihar (1283_CR2) 2007 1283_CR6 |
| References_xml | – volume: 41 start-page: 6611 issue: 15 year: 2014 end-page: 6621 ident: CR10 article-title: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.033 – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: CR4 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – volume: 20 start-page: 109 year: 2017 end-page: 131 ident: CR12 article-title: Neural Semantic Personalized Ranking for item cold-start recommendation publication-title: Inf Retrieval J doi: 10.1007/s10791-017-9295-9 – volume: 7 start-page: 80122 year: 2019 end-page: 80132 ident: CR16 article-title: An artificial intelligence driven multi-feature extraction scheme for big data detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923583 – volume: 40 start-page: 240 year: 2016 ident: CR9 article-title: A firefly algorithm-based approach for pseudo-relevance feedback: application to medical database publication-title: J Med Syst doi: 10.1007/s10916-016-0603-5 – volume: 7 start-page: 185916 year: 2019 end-page: 185927 ident: CR20 article-title: Detecting hot topics from academic big data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960285 – ident: CR14 – ident: CR15 – volume: 7 start-page: 125387 year: 2019 end-page: 125400 ident: CR22 article-title: MOPSO-based CNN for keyword selection on google ads publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937339 – start-page: 93 year: 1985 end-page: 100 ident: CR3 article-title: Multiple objective optimization with vector evaluated genetic algorithms publication-title: Proceedings of the first int. conference on genetic algorithms – volume: 2 start-page: 221 issue: 3 year: 1994 end-page: 248 ident: CR8 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – volume: 477 start-page: 100 year: 2019 end-page: 117 ident: CR17 article-title: sCAKE: semantic connectivity aware keyword extraction publication-title: Inf Sci doi: 10.1016/j.ins.2018.10.034 – ident: CR13 – ident: CR11 – volume: 94 start-page: 126 year: 2018 end-page: 136 ident: CR19 article-title: Bees swarm optimization guided by data mining techniques for document information retrieval publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.042 – volume: 7 start-page: 162254 year: 2019 end-page: 162267 ident: CR18 article-title: Text mining techniques to capture facts for cloud computing adoption and big data processing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950045 – year: 1993 ident: CR5 article-title: Genetic algorithms in structural topology optimization publication-title: Topology design of structures. NATO ASI series (series E: applied sciences) doi: 10.1007/978-94-011-1804-0_10 – ident: CR6 – ident: CR7 – year: 2007 ident: CR2 publication-title: Soft computing – start-page: 199 year: 2000 end-page: 222 ident: CR1 article-title: Large population or many generations for genetic algorithms? Implications in information retrieval publication-title: Soft computing in information retrieval, techniques and applications – volume: 69 start-page: 749 year: 2018 end-page: 770 ident: CR21 article-title: Topic relevance and diversity in information retrieval from large datasets: a multi-objective evolutionary algorithm approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.016 – ident: 1283_CR11 doi: 10.1145/383952.383970 – start-page: 199 volume-title: Soft computing in information retrieval, techniques and applications year: 2000 ident: 1283_CR1 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 1283_CR8 publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – volume: 477 start-page: 100 year: 2019 ident: 1283_CR17 publication-title: Inf Sci doi: 10.1016/j.ins.2018.10.034 – volume: 20 start-page: 109 year: 2017 ident: 1283_CR12 publication-title: Inf Retrieval J doi: 10.1007/s10791-017-9295-9 – volume: 80 start-page: 8091 year: 2021 ident: 1283_CR4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – ident: 1283_CR13 doi: 10.1145/1569901.1569904 – volume: 94 start-page: 126 year: 2018 ident: 1283_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.042 – volume: 69 start-page: 749 year: 2018 ident: 1283_CR21 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.016 – volume-title: Soft computing year: 2007 ident: 1283_CR2 – volume: 41 start-page: 6611 issue: 15 year: 2014 ident: 1283_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.033 – volume: 7 start-page: 125387 year: 2019 ident: 1283_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937339 – volume-title: Topology design of structures. NATO ASI series (series E: applied sciences) year: 1993 ident: 1283_CR5 doi: 10.1007/978-94-011-1804-0_10 – ident: 1283_CR15 doi: 10.1007/978-3-642-37899-7_16 – start-page: 93 volume-title: Proceedings of the first int. conference on genetic algorithms year: 1985 ident: 1283_CR3 – volume: 40 start-page: 240 year: 2016 ident: 1283_CR9 publication-title: J Med Syst doi: 10.1007/s10916-016-0603-5 – volume: 7 start-page: 185916 year: 2019 ident: 1283_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960285 – ident: 1283_CR6 – ident: 1283_CR14 doi: 10.1145/3077136.3082067 – ident: 1283_CR7 doi: 10.1109/ICEC.1994.350037 – volume: 7 start-page: 80122 year: 2019 ident: 1283_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923583 – volume: 7 start-page: 162254 year: 2019 ident: 1283_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950045 |
| SSID | ssj0002504465 |
| Score | 2.2215123 |
| SecondaryResourceType | review_article |
| Snippet | There are two prominent principles of any information retrieval system precision and analysis. Precision is the proportion of correct documents retrieved by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 409 |
| SubjectTerms | Big Data Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Decision theory Documents Efficiency Energy consumption Evolutionary algorithms Genetic algorithms Image retrieval Information retrieval Information Systems and Communication Service Keywords Language Multiple objective analysis Neural networks Objectives Optimization Pattern Recognition and Graphics Predictive Artificial Intelligence for Cyber Security and Privacy Relevance feedback Review Article Semantics Software Engineering/Programming and Operating Systems Vision |
| SummonAdditionalLinks | – databaseName: AAdvanced Technologies & Aerospace Database (subscription) dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXjxgYrVKjl40-A-kt3kJEVaPNUeFIqXJU8f2G7t1lL_vUmabVHQi-fAECbJN5Nk5vsAOGfcQWCc2pPGCcIMJ4hxSZHQ9i7hyAmFUV5sIu_16GDA-uHBrQpllTUmeqBWpXRv5Fc2LDmNJZvdXo_fkVONcr-rQUJjHWw4lgQn3dAnj8s3FkfPhb2apA1DdhKMDELfjO-es1CcM-TK2R1Kp2j-PTatEs4ff6Q-9HR3_jvpXbAdkk7YXuySPbCmR_sWUB2zLCwN7MzC_uOTT9h-e7IWps_DCtp8FvoGXVSK1wUwwjsLMcPQu3kAHrqd-5tbFAQVkLRheY7yWGGTYm2olJJFOqaKJYZEKk80SSKR0UhmhMssNZgbSYikzGhmrzTCCKHi9BA0RuVIHwHIHIuNK5ETJsFUci7SiGqTGapstEtxE1zUrizGC96MYsmQ7B1fWMcX3vHFvAlatf-KcIaqYuW8JrisV2A1_Lu147-tnYCtxC-6KxRrgcZ08qFPwaacTV-qyZnfQV_H7sx7 priority: 102 providerName: ProQuest |
| Title | Study of Evolutionary Algorithms for Multi-objective Optimization |
| URI | https://link.springer.com/article/10.1007/s42979-022-01283-x https://www.proquest.com/docview/2933168585 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagZWChPEWhVB7YwFKa2Ik9FtQKCalU5aGKJbIdG4pog5JSlX-P7SatQDDAkiUPRV_uvjvHd98BcMq4pcBWYDyNE4QZ9hHjkiKhzFrCihMKnbhhE1GvR4dD1i-awvKy2r3cknRMvWx2M8wZMWSrzy2pBshkjlUT7qgd2DC4fVj-WbGiXDgkRYfMz7d-jUKr1PLbbqgLMt3a_15vG2wVSSVsL6xgB6ypyS6olQMbYOG_e4ZDrZgsTDXszAqT49kHbL8-pdlo-jzOoUlhoevJRal4WXAhvDGsMi7aNffBfbdzd3mFihkKSJpIPEdRK8E6wEpTKSXzVIsmzNfESyJfEd8TIfVkSLgMA425loRIyrRiZhUjtBBJKzgAlUk6UYcAMitcY6vihPYxlZyLwKNKh5omJsAFuA7OSkzjt4VURrwURXboxAad2KETz-ugUcIeF26Txyb3sIO0zBKmDs5LmFenf3_a0d8uPwabvvtStlasASrT7F2dgA05m47yrAmqF51ef9AE69cRMsc-eWw6E_sEn5_K3A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILiwBRVh_gBBZp4jT2ASHEIlBL4QBSbyF2bBbRhbZA-Sm-kbGbUIEEtx44R7KSvJn3xvYsAFsisRRYCtDTkpAywXwqEsWp1LiXsM0JpUndsImoVuP1urgag4-8FsamVeac6Ig6bSl7Rr6HsmRnLGF0e9B-pnZqlL1dzUdoDMyiot_fcMvW3T8_Rny3ff_05ProjGZTBahCberTqJQyEzBtuFJKeLrEU-Gb0EsjX4e-J8vcU-UwUeXAsMSoMFRcGI1b81AaKdNSgOuOwwQLeGT9qhLRrzMd2w6MuemVKHv40SKsZ3U6rloPqT8S1KbPW1UIaP-7Fg4D3B93sk7qTmf_20-ag5ksqCaHAy-YhzHdXEDBsJ1zScuQk9fMv5LOOzl8usM37t03ugTjdeIKkGlLPg6In1wihTay2tRFuBnJWy9Bodlq6mUgwnbpsSmA0viMqySRgce1KRueopoHrAg7OXRxe9AXJP7qAO2AjhHo2AEd94uwluMVZxzRjYdgFWE3R3z4-PfVVv5ebROmzq4vqnH1vFZZhWnfGZxNiluDQq_zotdhUr32HrqdDWe9BG5HbQmfqswrYQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQQYgLZRWFAj5wA6tZnMQ-VtAKBCqVWNSbFTs2FNGkSkNV_h47SwsIDohzFkXj8ZuZeN4bAE5oaCDQdvVOCz2EKXYQDQVBXOpawogTchXlwyaCXo8MBrT_icWfd7tXR5IFp8GoNMVZaxyp1pz4plE0oMh0ohuAdZHOIpexaaQ39frd4_wvixHowr5XsmV-fvRrRFqkmd9ORvOA063__1M3wHqZbMJ24R2bYEnGW6BeDXKA5b7e1thqRGZhomBnWrpimL7D9utTkg6z59EE6tQW5lxdlPCXAiPhrUabUUnj3AEP3c79-SUqZysgoSP0DAV2hJWLpSJCCGpJm0TUUZ4VBY70HIv7xBK-FwrfVThUwvMEoUpSXd1wxXlku7ugFiex3AOQGkEb0y3HlYOJCEPuWkQqX5FIBz4XN8BpZV82LiQ02FwsObcO09ZhuXXYrAGa1RKwcjtNmM5JzIAtXdo0wFll8sXl39-2_7fbj8Fq_6LLbq561wdgzckXzbSTNUEtS9_kIVgR02w4SY9yL_sAI3bTOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+Evolutionary+Algorithms+for+Multi-objective+Optimization&rft.jtitle=SN+computer+science&rft.au=Gaikwad%2C+Rama&rft.au=Lakshmanan%2C+Ramanathan&rft.date=2022-09-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=3&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-022-01283-x&rft.externalDocID=10_1007_s42979_022_01283_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |