Vector Quantized Convolutional Autoencoder Network for LDCT Image Reconstruction with Hybrid Loss

Medical image reconstruction is the process of creating high-quality and accurate images. During acquisition, these devices capture raw measurements or signals that represent the internal structures of the human body. However, these raw measurements are often noisy or incomplete. Low-dose CT is a me...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SN computer science Ročník 5; číslo 1; s. 2
Hlavní autoři: Ramanathan, Shalini, Ramasundaram, Mohan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.01.2024
Springer Nature B.V
Témata:
ISSN:2661-8907, 2662-995X, 2661-8907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Medical image reconstruction is the process of creating high-quality and accurate images. During acquisition, these devices capture raw measurements or signals that represent the internal structures of the human body. However, these raw measurements are often noisy or incomplete. Low-dose CT is a medical imaging technique that uses a reduced amount of radiation to obtain detailed cross-sectional images of the body. Deep learning for low-dose CT is an emerging field that utilizes advanced artificial intelligence techniques to enhance the image quality and diagnostic accuracy of CT scans acquired with reduced radiation doses. A convolutional autoencoder for low-dose CT is a specific type of deep-learning architecture designed to address the challenges of reducing radiation doses while maintaining image quality. They are effectively trained on large datasets of both low-dose and standard-dose CT images to learn patterns and features that can compensate for the noise and artifacts present in low-dose scans. This research offers a new vector quantization-based convolutional autoencoder network strategy for CT image reconstruction. In vector quantization, discrete data elements are mapped to a set of representative vectors known as codebook entries. Each data element is associated with the nearest codebook entry based on a defined distance metric. This mapping allows for the efficient representation of discrete data by replacing each element with its corresponding codebook entry. Discrete data representation is essential for the efficient storage and transmission of information during the image reconstruction task. The results’ quality is assessed based on the perceptual and bias-reducing loss functions. On the LoDoPaB-CT benchmark dataset, experimental evaluations are done. Its findings demonstrated that, in terms of quantitative and visual evaluation, respectively, the proposed network obtained better performance metric values and better noise reduction results.
AbstractList Medical image reconstruction is the process of creating high-quality and accurate images. During acquisition, these devices capture raw measurements or signals that represent the internal structures of the human body. However, these raw measurements are often noisy or incomplete. Low-dose CT is a medical imaging technique that uses a reduced amount of radiation to obtain detailed cross-sectional images of the body. Deep learning for low-dose CT is an emerging field that utilizes advanced artificial intelligence techniques to enhance the image quality and diagnostic accuracy of CT scans acquired with reduced radiation doses. A convolutional autoencoder for low-dose CT is a specific type of deep-learning architecture designed to address the challenges of reducing radiation doses while maintaining image quality. They are effectively trained on large datasets of both low-dose and standard-dose CT images to learn patterns and features that can compensate for the noise and artifacts present in low-dose scans. This research offers a new vector quantization-based convolutional autoencoder network strategy for CT image reconstruction. In vector quantization, discrete data elements are mapped to a set of representative vectors known as codebook entries. Each data element is associated with the nearest codebook entry based on a defined distance metric. This mapping allows for the efficient representation of discrete data by replacing each element with its corresponding codebook entry. Discrete data representation is essential for the efficient storage and transmission of information during the image reconstruction task. The results’ quality is assessed based on the perceptual and bias-reducing loss functions. On the LoDoPaB-CT benchmark dataset, experimental evaluations are done. Its findings demonstrated that, in terms of quantitative and visual evaluation, respectively, the proposed network obtained better performance metric values and better noise reduction results.
ArticleNumber 2
Author Ramasundaram, Mohan
Ramanathan, Shalini
Author_xml – sequence: 1
  givenname: Shalini
  orcidid: 0000-0002-4954-8013
  surname: Ramanathan
  fullname: Ramanathan, Shalini
  email: 406916001@nitt.edu
  organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli
– sequence: 2
  givenname: Mohan
  surname: Ramasundaram
  fullname: Ramasundaram, Mohan
  organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli
BookMark eNp9kMtOwzAQRS1UJErpD7CyxDrgOE8vq_BopQgEKmwt25mUlNYudkJbvh6XIMGKxTwW517N3FM00EYDQuchuQwJya5cTFnGAkIjX5Qlwe4IDWmahkHOSDb4s5-gsXNLQghNSBynyRCJF1CtsfixE7ptPqHChdEfZtW1jdFihSdda0ArU4HF99BujX3DtefL62KOZ2uxAPwEymjX2k4dNHjbtK94upe2qXBpnDtDx7VYORj_zBF6vr2ZF9OgfLibFZMyUGGe7AJKK5LLCtKEkUjFQKRQYVIxxnyTYU2rHDJIJRNZLUnCaK0AaJbLTBIVSRGN0EXvu7HmvQPX8qXprP_BccoiT9KIJp6iPaWsv81CzTe2WQu75yHhhzR5nyb3afLvNPnOi6Je5DysF2B_rf9RfQF7A3uh
Cites_doi 10.1038/s41597-021-00893-z
10.1109/TCI.2022.3146810
10.1109/TMI.2018.2827462
10.1109/LRA.2022.3145064
10.1109/TCI.2022.3175309
10.1088/1361-6420/aba415
10.1002/mp.12344
10.1109/TMI.2017.2715284
10.1109/TMI.2018.2799231
10.1109/TMI.2017.2708987
10.6026/97320630006041
10.1109/TMI.2012.2195669
10.4108/eai.24-9-2020.166360
10.1109/TMI.2020.2968472
10.21037/qims-21-465
10.2214/ajr.174.1.1740071
10.1016/j.procs.2020.01.040
10.1016/S0304-4076(97)00010-9
10.1109/TIP.2017.2662206
10.1007/s10278-006-0589-5
10.3390/jimaging7110243
10.1109/TMI.2018.2832007
10.1118/1.4957556
10.1118/1.3528204
10.1109/TIP.2003.819861
10.1109/PCS50896.2021.9477470
10.1109/ICHMS53169.2021.9582444
10.1007/978-981-33-4788-5\_6
10.1007/978-981-15-6353-9_19
10.1007/978-3-319-46475-6_43
10.1201/9781003141105-9
10.1109/IEEECONF51394.2020.9443547
10.1109/TNNLS.2022.3169569
10.1109/ICASSP39728.2021.9413855
10.1109/SIBGRAPI54419.2021.00026
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02295-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02295_x
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
BSONS
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c185x-22d08bde65903c4e0bac15d9995d9b1f2d8e7e6b9a7fb0592fcee278b7b0c3ba3
IEDL.DBID P5Z
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 14:54:02 EST 2025
Sat Nov 29 01:32:51 EST 2025
Fri Feb 21 02:41:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Quantization
Convolutional neural network medical image reconstruction
Autoencoders
Low-dose computed tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185x-22d08bde65903c4e0bac15d9995d9b1f2d8e7e6b9a7fb0592fcee278b7b0c3ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4954-8013
PQID 2932782325
PQPubID 6623307
ParticipantIDs proquest_journals_2932782325
crossref_primary_10_1007_s42979_023_02295_x
springer_journals_10_1007_s42979_023_02295_x
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Zhang, Zuo, Chen, Meng, Zhang (CR40) 2017; 26
Armato (CR30) 2011
Li (CR12) 2022
Ramanathan, Ramasundaram (CR44) 2022; 29
Chen, Chen, Chen, Zou, Shi (CR2) 2022; 60
CR19
Sun, Zhang, Wen (CR4) 2022; 27
Yu, Zhai, Xia, Wu, Liao (CR1) 2022; 7
CR17
CR38
Saravanan, Juliet (CR26) 2020
CR37
CR36
Adler, Öktem (CR31) 2018; 37
CR35
Shiraishi (CR14) 2000
CR32
Pai (CR33) 1997; 79
Xu, Yu, Mou, Zhang, Hsieh, Wang (CR10) 2012
Li, Hsu, Xie, Cong, Gao (CR16) 2020
Wolterink, Leiner, Viergever, Išgum (CR41) 2017; 36
Liu, Chaman, Belius, Dokmanic (CR23) 2022; 8
Chandra, Ramakrishnan, Ramanathan (CR6) 2011; 6
Diwakar, Pandey, Singh, Sisodia, Arya, Singh, Chakraborty (CR3) 2022; 19
CR5
Ramanathan, Ramasundaram (CR8) 2019; 1
CR7
CR29
Denker, Schmidt, Leuschner, Maass (CR24) 2021
Baguer, Leuschner, Schmidt (CR25) 2020
CR28
CR9
Chen (CR11) 2017
CR22
CR43
CR20
Kang, Min, Ye (CR42) 2017; 44
Leuschner, Schmidt, Baguer, Maass (CR21) 2021
McCollough (CR13) 2016
Reid, Williamson (CR34) 2010; 1
Clark (CR15) 2007
Yang, Yan, Zhang, Yu, Shi, Mou, Kalra, Zhang, Sun, Wang (CR18) 2018; 37
Zheng, Ravishankar, Long, Fessler (CR27) 2018
Wang, Bovik, Sheikh, Simoncelli (CR39) 2004
M Diwakar (2295_CR3) 2022; 19
H Chen (2295_CR11) 2017
J Chen (2295_CR2) 2022; 60
Q Li (2295_CR12) 2022
E Kang (2295_CR42) 2017; 44
2295_CR7
2295_CR9
SG Armato (2295_CR30) 2011
J Leuschner (2295_CR21) 2021
JM Wolterink (2295_CR41) 2017; 36
2295_CR5
S Ramanathan (2295_CR44) 2022; 29
S Yu (2295_CR1) 2022; 7
2295_CR22
Z Wang (2295_CR39) 2004
2295_CR20
J Shiraishi (2295_CR14) 2000
2295_CR43
M Li (2295_CR16) 2020
KW Clark (2295_CR15) 2007
A Denker (2295_CR24) 2021
2295_CR28
2295_CR29
Y Sun (2295_CR4) 2022; 27
Q Yang (2295_CR18) 2018; 37
S Ramanathan (2295_CR8) 2019; 1
DO Baguer (2295_CR25) 2020
C McCollough (2295_CR13) 2016
T Liu (2295_CR23) 2022; 8
V Chandra (2295_CR6) 2011; 6
Q Xu (2295_CR10) 2012
2295_CR37
2295_CR38
2295_CR35
X Zheng (2295_CR27) 2018
2295_CR36
S Saravanan (2295_CR26) 2020
2295_CR32
JS Pai (2295_CR33) 1997; 79
MD Reid (2295_CR34) 2010; 1
K Zhang (2295_CR40) 2017; 26
2295_CR19
2295_CR17
J Adler (2295_CR31) 2018; 37
References_xml – ident: CR22
– ident: CR43
– year: 2021
  ident: CR21
  article-title: LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00893-z
– volume: 27
  start-page: 109
  issue: 8
  year: 2022
  end-page: 120
  ident: CR4
  article-title: Image reconstruction based on fractional Tikhonov framework for planar array capacitance sensor
  publication-title: IEEE Transact Comput Imaging
  doi: 10.1109/TCI.2022.3146810
– volume: 37
  start-page: 1348
  issue: 6
  year: 2018
  end-page: 1357
  ident: CR18
  article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: CR37
– volume: 7
  start-page: 5238
  issue: 2
  year: 2022
  end-page: 5245
  ident: CR1
  article-title: SE-ResUNet: a novel robotic grasp detection method
  publication-title: IEEE Robot Automat Lett
  doi: 10.1109/LRA.2022.3145064
– volume: 8
  start-page: 425
  year: 2022
  end-page: 437
  ident: CR23
  article-title: Learning multiscale convolutional dictionaries for image reconstruction
  publication-title: IEEE Transact Comput Imaging
  doi: 10.1109/TCI.2022.3175309
– year: 2020
  ident: CR25
  article-title: Computed tomography reconstruction using deep image prior and learned reconstruction methods
  publication-title: Inverse Probl
  doi: 10.1088/1361-6420/aba415
– ident: CR35
– volume: 44
  start-page: e360
  issue: 10
  year: 2017
  end-page: e375
  ident: CR42
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med Phys
  doi: 10.1002/mp.12344
– ident: CR29
– year: 2017
  ident: CR11
  article-title: Low-dose CT with a residual encoder-decoder convolutional neural network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2715284
– volume: 37
  start-page: 1322
  issue: 6
  year: 2018
  end-page: 1332
  ident: CR31
  article-title: Learned primal-dual reconstruction
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2799231
– volume: 36
  start-page: 2536
  issue: 12
  year: 2017
  end-page: 2545
  ident: CR41
  article-title: Generative adversarial networks for noise reduction in low-dose CT
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2708987
– volume: 19
  start-page: 182
  year: 2022
  end-page: 193
  ident: CR3
  article-title: Low-dose COVID-19 CT image denoising using CNN and its method noise thresholding
  publication-title: Curr Med Imaging
– volume: 6
  start-page: 41
  issue: 1
  year: 2011
  ident: CR6
  article-title: An ANN model for the identification of deleterious nsSNPs in tumor suppressor genes
  publication-title: Bioinformation
  doi: 10.6026/97320630006041
– year: 2012
  ident: CR10
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2195669
– year: 2020
  ident: CR26
  article-title: Deep medical image reconstruction with autoencoders using deep Boltzmann machine training
  publication-title: EAI Endorsed Trans Pervasive Heal Technol
  doi: 10.4108/eai.24-9-2020.166360
– year: 2020
  ident: CR16
  article-title: SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2968472
– year: 2022
  ident: CR12
  article-title: Low-dose computed tomography image reconstruction via a multistage convolutional neural network with autoencoder perceptual loss network
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-21-465
– ident: CR19
– year: 2000
  ident: CR14
  article-title: Development of a digital image database for chest radiographs with and without a lung nodule
  publication-title: Am J Roentgenol
  doi: 10.2214/ajr.174.1.1740071
– volume: 1
  start-page: 343
  issue: 165
  year: 2019
  end-page: 348
  ident: CR8
  article-title: Hypergraph learning for fundamental shape detection
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2020.01.040
– volume: 79
  start-page: 129
  issue: 1
  year: 1997
  end-page: 146
  ident: CR33
  article-title: Bayesian analysis of compound loss distributions
  publication-title: J Econ
  doi: 10.1016/S0304-4076(97)00010-9
– ident: CR38
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR2
  article-title: A degraded reconstruction enhancement-based method for tiny ship detection in remote sensing images with a new large-scale dataset
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 29
  start-page: 1
  year: 2022
  ident: CR44
  article-title: Alzheimer’s disease shape detection model in brain magnetic resonance images via whale optimization with kernel support vector machine
  publication-title: J Electrical Eng Technol
– ident: CR17
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  ident: CR40
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– year: 2007
  ident: CR15
  article-title: Creation of a CT image library for the lung screening study of the national lung screening trial
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-006-0589-5
– year: 2021
  ident: CR24
  article-title: Conditional invertible neural networks for medical imaging
  publication-title: J Imaging
  doi: 10.3390/jimaging7110243
– year: 2018
  ident: CR27
  article-title: PWLS-ULTRA: an efficient clustering and learning-based approach for low-dose 3D CT image reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2832007
– ident: CR9
– year: 2016
  ident: CR13
  article-title: TU-FG-207A-04: overview of the low dose CT grand challenge
  publication-title: Med Phy
  doi: 10.1118/1.4957556
– year: 2011
  ident: CR30
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med Phys
  doi: 10.1118/1.3528204
– ident: CR32
– ident: CR36
– ident: CR5
– ident: CR7
– year: 2004
  ident: CR39
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 1
  start-page: 2387
  issue: 11
  year: 2010
  end-page: 2422
  ident: CR34
  article-title: Composite binary losses
  publication-title: J Mach Learn Res
– ident: CR28
– ident: CR20
– ident: 2295_CR38
  doi: 10.1109/PCS50896.2021.9477470
– ident: 2295_CR35
  doi: 10.1109/ICHMS53169.2021.9582444
– volume: 19
  start-page: 182
  year: 2022
  ident: 2295_CR3
  publication-title: Curr Med Imaging
– volume: 29
  start-page: 1
  year: 2022
  ident: 2295_CR44
  publication-title: J Electrical Eng Technol
– year: 2000
  ident: 2295_CR14
  publication-title: Am J Roentgenol
  doi: 10.2214/ajr.174.1.1740071
– ident: 2295_CR36
– volume: 7
  start-page: 5238
  issue: 2
  year: 2022
  ident: 2295_CR1
  publication-title: IEEE Robot Automat Lett
  doi: 10.1109/LRA.2022.3145064
– year: 2020
  ident: 2295_CR26
  publication-title: EAI Endorsed Trans Pervasive Heal Technol
  doi: 10.4108/eai.24-9-2020.166360
– volume: 79
  start-page: 129
  issue: 1
  year: 1997
  ident: 2295_CR33
  publication-title: J Econ
  doi: 10.1016/S0304-4076(97)00010-9
– volume: 37
  start-page: 1348
  issue: 6
  year: 2018
  ident: 2295_CR18
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: 2295_CR7
  doi: 10.1007/978-981-33-4788-5\_6
– ident: 2295_CR9
  doi: 10.1007/978-981-15-6353-9_19
– ident: 2295_CR29
– year: 2020
  ident: 2295_CR25
  publication-title: Inverse Probl
  doi: 10.1088/1361-6420/aba415
– volume: 44
  start-page: e360
  issue: 10
  year: 2017
  ident: 2295_CR42
  publication-title: Med Phys
  doi: 10.1002/mp.12344
– volume: 37
  start-page: 1322
  issue: 6
  year: 2018
  ident: 2295_CR31
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2799231
– ident: 2295_CR32
  doi: 10.1007/978-3-319-46475-6_43
– ident: 2295_CR5
  doi: 10.1201/9781003141105-9
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 2295_CR40
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– volume: 27
  start-page: 109
  issue: 8
  year: 2022
  ident: 2295_CR4
  publication-title: IEEE Transact Comput Imaging
  doi: 10.1109/TCI.2022.3146810
– year: 2011
  ident: 2295_CR30
  publication-title: Med Phys
  doi: 10.1118/1.3528204
– year: 2017
  ident: 2295_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2715284
– ident: 2295_CR28
  doi: 10.1109/IEEECONF51394.2020.9443547
– volume: 60
  start-page: 1
  year: 2022
  ident: 2295_CR2
  publication-title: IEEE Trans Geosci Remote Sens
– ident: 2295_CR43
  doi: 10.1109/TNNLS.2022.3169569
– year: 2021
  ident: 2295_CR21
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00893-z
– year: 2012
  ident: 2295_CR10
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2195669
– ident: 2295_CR19
  doi: 10.1007/978-3-319-46475-6_43
– volume: 36
  start-page: 2536
  issue: 12
  year: 2017
  ident: 2295_CR41
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2708987
– ident: 2295_CR17
– volume: 1
  start-page: 343
  issue: 165
  year: 2019
  ident: 2295_CR8
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2020.01.040
– volume: 1
  start-page: 2387
  issue: 11
  year: 2010
  ident: 2295_CR34
  publication-title: J Mach Learn Res
– ident: 2295_CR37
  doi: 10.1109/ICASSP39728.2021.9413855
– year: 2004
  ident: 2295_CR39
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– year: 2016
  ident: 2295_CR13
  publication-title: Med Phy
  doi: 10.1118/1.4957556
– volume: 8
  start-page: 425
  year: 2022
  ident: 2295_CR23
  publication-title: IEEE Transact Comput Imaging
  doi: 10.1109/TCI.2022.3175309
– year: 2022
  ident: 2295_CR12
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-21-465
– ident: 2295_CR22
  doi: 10.1109/SIBGRAPI54419.2021.00026
– volume: 6
  start-page: 41
  issue: 1
  year: 2011
  ident: 2295_CR6
  publication-title: Bioinformation
  doi: 10.6026/97320630006041
– year: 2018
  ident: 2295_CR27
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2832007
– year: 2007
  ident: 2295_CR15
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-006-0589-5
– ident: 2295_CR20
– year: 2020
  ident: 2295_CR16
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2968472
– year: 2021
  ident: 2295_CR24
  publication-title: J Imaging
  doi: 10.3390/jimaging7110243
SSID ssj0002504465
Score 2.242533
Snippet Medical image reconstruction is the process of creating high-quality and accurate images. During acquisition, these devices capture raw measurements or signals...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Codes
Computed tomography
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
COVID-19
Data compression
Data Structures and Information Theory
Datasets
Deep learning
Dictionaries
Image acquisition
Image enhancement
Image quality
Image reconstruction
Imaging techniques
Information Systems and Communication Service
Machine learning
Medical imaging
Neural networks
Noise reduction
Original Research
Pattern Recognition and Graphics
Quality assessment
Radiation
Radiation dosage
Representations
Research Trends in Computational Intelligence
Software Engineering/Programming and Operating Systems
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwsBCeYpCQR7YIFLixok9okJVpKriUapuUfySOpAi-lDh13POoxUIBhiSJbHjnB_fd2ffHcAF9qqlgbWeURIVFB46Q1OqPRZwo0WIAKXCPNlE3O_z0Ujcl05h0-q0e7Ulma_UK2c3XDlj4SHG4EUF85A5biLccZew4fFpuLKsuKBcYcRKD5mfi35FoTW1_LYbmoNMp_6_5u3CTkkqyXUxCvZgw2T7UK8SNpBy_h5AOsxt9ORhjvIcfxhN2pNsUQ4-V8F8NnGBLTUW6hfnwwmSWtK7aQ_I3QsuPcSpq-ugs8SZcUn33bl9kR7-6SE8d24H7a5X5ljwFCL10qNU-1xqEzHht1RofJmqgGmkjXiTgaWam9hEUqSxlUjFqEVUpTGXsfRVS6atI6hlk8wcA3HaB2dGCp-a0KRMRNLGKrI61cYiD2vAZSXz5LUIpZGsgibn0ktQekkuvWTZgGbVLUk5raYJchP8NpJA1oCrqhvWj3-v7eRvr5_CNkXyUphamlBDqZoz2FKL2Xj6dp4Pt092edQW
  priority: 102
  providerName: Springer Nature
Title Vector Quantized Convolutional Autoencoder Network for LDCT Image Reconstruction with Hybrid Loss
URI https://link.springer.com/article/10.1007/s42979-023-02295-x
https://www.proquest.com/docview/2932782325
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwCBBlqXzgBhapGyfxCUGhKqKqyqqKSxRvUg-0pZsKX8_YTVuBBBcO8SWRlcw4856f7RmAE_SqZSVrqVESJyhJ6ISmTFNeSowWIQKUCn2xibjRSFot0cwFt0G-rXIWE32g1l3lNPJzhCWGaFZm_KL3Tl3VKLe6mpfQWIZVlyXBlW5o8te5xuLSc4W-miTCEKNC8FZ-bsafnsNQHAuKoIUXE5xOvmPTgnD-WCP10FPd_O9Lb8FGTjrJ5XSUbMOS6exA9uIFe3I_QuO2P40mlW5nnI9E9_Ro2HVZLrXpk8Z0szhBhkvq15UncvuGcYi4uesiAy1xmi6pfbgzYKSOH7gLz9Wbp0qN5gUXqELYnlDGdJBIbSIugrIKTSAzVeIaOSQ2smSZTkxsIimy2ErkZcwixOIHylgGqiyz8h6sdLodsw_ETUUSbqQImAlNxkUkbawiqzNtLJKyApzOTJ32pnk10nkGZe-YFB2TesekkwIczeyb5v_YIF0YtwBnMw8tbv_e28HfvR3COkPmMtVZjmAFrWiOYU2Nh-1BvwirVzeN5kMRlu9iWvTjDduHx5cvpGDcgQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4omujFR9SIzz3oSTeWbUvbgzEGJRCQaIKGW-2-Eg4Cig_wR_kbnd22Ek30xsFDe2kzTXe-nW92dmcG4AC1qllJa6oExwVK6JlAUyKpXwqVjDwkKOHZZhNBqxV2OtH1DHzkuTDmWGVuE62hln1hYuQnSEsM2cxl_tngkZquUWZ3NW-hkcKiocZvuGQbntYvUL-HjFUv25UazboKUIHcNKKMSSfkUpX9yHGFpxyeiJIv0VHCGy9pJkMVqDKPkkBzdD6YRh7BT_OAO8LliYtyZ2HOc8PAzKtGQL9iOqYcmGe7VyLtMYoSO1mejs3WQ9MfRBRJEi8W-XT0nQsnDu6PPVlLddXl_zZIK7CUOdXkPJ0FqzCjemuQ3NkNCXLzguDpvitJKv3eazbTzNsvz31TxVOqJ9JKD8MT9OBJ86LSJvUHtLPErM0nFXaJiVmT2tjkuJEmDug63E7lrzag0Ov31CYQs9QKfcUjhylPJX5U5joQZS0TqTQ6nUU4ylUbD9K6IfFXhWgLhBiBEFsgxKMi7OT6jDMbMownyizCcY6IyePfpW39LW0fFmrtq2bcrLca27DI0EtLY0o7UMARVbswL16fu8OnPYtuAvfTRsonFzw4Sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QQIgL4ykGA3LgBtW6rGmbI9qYhpiqIca0W9S8pB3oJvbQ4Nfj9LEBggPi0F7apKntxJ8d20HoCrhqSN0YR0sBBkroWUdTrBxaD7ViHigo6aWHTQRRFA6HrPcpiz-Ndi-2JLOcBlulKZnVJsrUVolvsIoGzAF9Axdh1AEUuenZQHprrz8NVl4WW6DL82meLfNz068aaQ0zv-2MpgqnXf7_UPfQbg428W0mHftoQycHqFwc5IDzeX2I4kHqu8ePc6Dz6F0r3Bwni1wobQfz2dgWvFTQKMrixjGAXdxtNfv4_gWWJGzN2HUxWmzdu7jzZtPBcBf--gg9t-_6zY6Tn73gSNDgS4cQ5YZCaZ8ytyE97YpY1qkCOAk3UTdEhTrQvmBxYARANGJA25IgFIFwZUPEjWNUSsaJPkHYWiUh1YK5RHs6pswXJpC-UbHSBvBZBV0X9OeTrMQGXxVTTqnHgXo8pR5fVlC1YBHPp9uUA2aBbwM4pBV0U7Bk_fj33k7_9vol2u612rx7Hz2coR0C-CbzxlRRCQisz9GWXMxG09eLVAo_AGwJ394
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+Quantized+Convolutional+Autoencoder+Network+for+LDCT+Image+Reconstruction+with+Hybrid+Loss&rft.jtitle=SN+computer+science&rft.au=Ramanathan%2C+Shalini&rft.au=Ramasundaram%2C+Mohan&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1007%2Fs42979-023-02295-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon