Image–text feature learning for unsupervised visible–infrared person re-identification

Visible–infrared person re-identification (VI-ReID) focuses on matching infrared and visible images of the same person. To reduce labeling costs, unsupervised VI-ReID (UVI-ReID) methods typically use clustering algorithms to generate pseudo-labels and iteratively optimize the model based on these ps...

Full description

Saved in:
Bibliographic Details
Published in:Image and vision computing Vol. 158; p. 105520
Main Authors: Guo, Jifeng, Pang, Zhiqi
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2025
Subjects:
ISSN:0262-8856
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visible–infrared person re-identification (VI-ReID) focuses on matching infrared and visible images of the same person. To reduce labeling costs, unsupervised VI-ReID (UVI-ReID) methods typically use clustering algorithms to generate pseudo-labels and iteratively optimize the model based on these pseudo-labels. Although existing UVI-ReID methods have achieved promising performance, they often overlook the effectiveness of text semantics in inter-modality matching and modality-invariant feature learning. In this paper, we propose an image–text feature learning (ITFL) method, which not only leverages text semantics to enhance intra-modality identity-related learning but also incorporates text semantics into inter-modality matching and modality-invariant feature learning. Specifically, ITFL first performs modality-aware feature learning to generate pseudo-labels within each modality. Then, ITFL employs modality-invariant text modeling (MTM) to learn a text feature for each cluster in the visible modality, and utilizes inter-modality dual-semantics matching (IDM) to match inter-modality positive clusters. To obtain modality-invariant and identity-related image features, we not only introduce a cross-modality contrastive loss in ITFL to mitigate the impact of modality gaps, but also develop a text semantic consistency loss to further promote modality-invariant feature learning. Extensive experimental results on VI-ReID datasets demonstrate that ITFL not only outperforms existing unsupervised methods but also competes with some supervised approaches. •We introduce text semantics into both inter-modality matching and learning.•We match inter-modality positive clusters based on dual semantics.•Text semantic consistency loss is introduced for modality-invariant learning.
AbstractList Visible–infrared person re-identification (VI-ReID) focuses on matching infrared and visible images of the same person. To reduce labeling costs, unsupervised VI-ReID (UVI-ReID) methods typically use clustering algorithms to generate pseudo-labels and iteratively optimize the model based on these pseudo-labels. Although existing UVI-ReID methods have achieved promising performance, they often overlook the effectiveness of text semantics in inter-modality matching and modality-invariant feature learning. In this paper, we propose an image–text feature learning (ITFL) method, which not only leverages text semantics to enhance intra-modality identity-related learning but also incorporates text semantics into inter-modality matching and modality-invariant feature learning. Specifically, ITFL first performs modality-aware feature learning to generate pseudo-labels within each modality. Then, ITFL employs modality-invariant text modeling (MTM) to learn a text feature for each cluster in the visible modality, and utilizes inter-modality dual-semantics matching (IDM) to match inter-modality positive clusters. To obtain modality-invariant and identity-related image features, we not only introduce a cross-modality contrastive loss in ITFL to mitigate the impact of modality gaps, but also develop a text semantic consistency loss to further promote modality-invariant feature learning. Extensive experimental results on VI-ReID datasets demonstrate that ITFL not only outperforms existing unsupervised methods but also competes with some supervised approaches. •We introduce text semantics into both inter-modality matching and learning.•We match inter-modality positive clusters based on dual semantics.•Text semantic consistency loss is introduced for modality-invariant learning.
ArticleNumber 105520
Author Pang, Zhiqi
Guo, Jifeng
Author_xml – sequence: 1
  givenname: Jifeng
  surname: Guo
  fullname: Guo, Jifeng
  email: guojifeng@guat.edu.cn
  organization: College of Computer Science and Engineering, Guilin University Of Aerospace Technology, Guilin, 541000, Guangxi, China
– sequence: 2
  givenname: Zhiqi
  orcidid: 0000-0003-0940-3351
  surname: Pang
  fullname: Pang, Zhiqi
  email: 22b903055@stu.hit.edu.cn
  organization: Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
BookMark eNp9kM1KAzEUhbOoYFt9AxfzAlOTTDNJNoIUfwoFN7pxEzLJTUlpMyVJi-58B9_QJzHDuHZzLpzDOVy-GZqEPgBCNwQvCCbt7W7hD_rs04JiyorFGMUTNMW0pbUQrL1Es5R2GGOOuZyi9_VBb-Hn6zvDR64c6HyKUO1Bx-DDtnJ9rE4hnY4QyybYqqjv9kPBBxd1LFbJUh-qCLW3ELJ33ujs-3CFLpzeJ7j-u3P09vjwunquNy9P69X9pjZEsFzUYU55q2UnrGyEBky06Cwwah0TVFqLu6V2TovGMNxyKVsOWjYgiKPcNXO0HHdN7FOK4NQxFgbxUxGsBiZqp0YmamCiRialdjfWoPx29hBVMh6CAesjmKxs7_8f-AWRRHT4
Cites_doi 10.1109/TIP.2021.3092578
10.1016/j.imavis.2024.105128
10.1016/j.knosys.2023.110263
10.1016/j.knosys.2023.111350
10.1109/ICCV.2015.133
10.1109/CVPR46437.2021.01175
10.1109/ICCV48922.2021.01331
10.1109/CVPR52729.2023.00214
10.1007/978-3-540-31865-1_25
10.1109/TPAMI.2021.3054775
10.1609/aaai.v37i1.25225
10.3390/s17030605
10.1109/ICCV51070.2023.01016
10.1109/TIP.2023.3310338
10.1109/CVPR52688.2022.01391
10.1007/978-3-031-26351-4_20
10.1609/aaai.v33i01.33018738
10.1109/CVPR.2018.00110
10.1109/CVPR.2016.90
10.1109/CVPR52733.2024.00045
10.1109/TMM.2022.3206662
10.1609/aaai.v34i04.5891
10.1007/s11263-022-01653-1
10.1109/ICCV51070.2023.01027
10.1109/TIFS.2019.2921454
10.1609/aaai.v35i4.16466
10.1109/CVPR52729.2023.00921
10.1145/3581783.3612050
10.1109/CVPR.2018.00016
10.1109/ICCV.2017.575
10.1145/3664647.3681067
10.1109/TIP.2022.3213193
10.1145/3503161.3548198
10.1109/ICCV51070.2023.01035
10.1609/aaai.v34i07.7000
10.1109/TIFS.2021.3139224
10.1002/nav.3800020109
10.1109/TIP.2023.3266166
10.1109/CVPR52733.2024.01596
10.1109/CVPR52729.2023.02179
10.1609/aaai.v33i01.33018385
10.1109/TIFS.2020.3001665
10.1016/j.neunet.2024.106477
10.1109/CVPR52688.2022.00716
10.1109/TCSVT.2024.3408831
10.1109/ICCV48922.2021.01469
10.1016/j.imavis.2024.105066
10.1609/aaai.v36i1.19970
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2025.105520
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_imavis_2025_105520
S0262885625001088
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c185t-c1f07276a9b8d938ae01a8bde52df5829dd0b4affa83c50679967ea93e81f27f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460008400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Sat Nov 29 07:57:29 EST 2025
Sat May 03 15:56:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Vision-language models
Visible–infrared person re-identification
Unsupervised learning
Contrastive learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c185t-c1f07276a9b8d938ae01a8bde52df5829dd0b4affa83c50679967ea93e81f27f3
ORCID 0000-0003-0940-3351
ParticipantIDs crossref_primary_10_1016_j_imavis_2025_105520
elsevier_sciencedirect_doi_10_1016_j_imavis_2025_105520
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pang, Zhao, Wang (b4) 2024
M. Ye, W. Ruan, B. Du, M.Z. Shou, Channel augmented joint learning for visible-infrared recognition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13567–13576.
Zhou, Yang, Loy, Liu (b16) 2022; 130
Ye, Shen, Shao (b33) 2020; 16
Z. Wu, M. Ye, Unsupervised visible-infrared person re-identification via progressive graph matching and alternate learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9548–9558.
Ge, Chen, Li (b54) 2020
Ye, Shen, Lin, Xiang, Shao, Hoi (b58) 2021; 44
Ye, Wang, Lan, Yuen (b31) 2018; vol. 1
Yang, Chen, Ma, Ye (b36) 2023
Y. Cho, W.J. Kim, S. Hong, S.-E. Yoon, Part-based pseudo label refinement for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7308–7318.
S. Li, L. Sun, Q. Li, CLIP-ReID: exploiting vision-language model for image re-identification without concrete text labels, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023, pp. 1405–1413, 1.
Li, Zhang (b23) 2020
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b21) 2014; vol. 27
H. Yu, X. Cheng, W. Peng, W. Liu, G. Zhao, Modality unifying network for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11185–11195.
Nguyen, Hong, Kim, Park (b45) 2017; 17
Kingma, Ba (b53) 2014
T. He, L. Shen, Y. Guo, G. Ding, Z. Guo, Secret: Self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 879–887, 1.
X. Fang, Y. Yang, Y. Fu, Visible-infrared person re-identification via semantic alignment and affinity inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11270–11279.
Yin, Zhang, Ma, Guo, Liu (b57) 2023; 32
Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang, Random erasing data augmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 13001–13008, 07.
Z. Hu, B. Yang, M. Ye, Empowering Visible-Infrared Person Re-Identification with Large Foundation Models, in: Advances in Neural Information Processing Systems.
Z. Dai, G. Wang, W. Yuan, S. Zhu, P. Tan, Cluster contrast for unsupervised person re-identification, in: Proceedings of the Asian Conference on Computer Vision, 2022, pp. 1142–1160.
Chen, Tuo, Guo, Zhang, Wang, Gao (b1) 2024
Li, Qi, Chen, Zhou (b49) 2021
D. Li, X. Wei, X. Hong, Y. Gong, Infrared-visible cross-modal person re-identification with an x modality, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 4610–4617, 04.
Z. Chen, Z. Zhang, X. Tan, Y. Qu, Y. Xie, Unveiling the power of clip in unsupervised visible-infrared person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2023, pp. 3667–3675.
Lan, Teng, Zhang, Zhang, Tao (b27) 2023
B. Yang, J. Chen, M. Ye, Shallow-Deep Collaborative Learning for Unsupervised Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 16870–16879.
Pang, Zhao, Liu, Sharma, Wang (b9) 2024
B. Yang, M. Ye, J. Chen, Z. Wu, Augmented dual-contrastive aggregation learning for unsupervised visible-infrared person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2022, pp. 2843–2851.
J. Feng, A. Wu, W.-S. Zheng, Shape-erased feature learning for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22752–22761.
Pang, Wang, Zhao, Liu, Sharma (b38) 2023
Kuhn (b44) 1955; 2
Y. Lin, X. Dong, L. Zheng, Y. Yan, Y. Yang, A bottom-up clustering approach to unsupervised person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8738–8745, 01.
C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, in: European Conference on Information Retrieval, 2005, pp. 345–359.
Liang, Wang, Lai, Xie (b11) 2021; 30
M. Yang, Z. Huang, P. Hu, T. Li, J. Lv, X. Peng, Learning with twin noisy labels for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14308–14317.
Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark (b15) 2021
A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong, J. Lai, RGB-infrared cross-modality person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017, pp. 5380–5389.
Y. Zhang, H. Wang, Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2153–2162.
W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, J. Jiao, Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 994–1003.
Z. Zhao, B. Liu, Q. Chu, Y. Lu, N. Yu, Joint color-irrelevant consistency learning and identity-aware modality adaptation for visible-infrared cross modality person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 3520–3528.
Lan, Chen, Ke, Wang, Feng, Zhang (b41) 2025
Pang, Zhao, Liu, Wang (b18) 2022; 25
Li, Liu, Peng, Jiang (b48) 2024
Z. Pang, L. Zhao, C. Wang, Dual-resolution fusion modeling for unsupervised cross-resolution person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2024, pp. 4063–4072.
Ye, Chen, Shen, Shao (b59) 2021; 17
H. Chen, B. Lagadec, F. Bremond, Ice: Inter-instance contrastive encoding for unsupervised person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14960–14969.
L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer gan to bridge domain gap for person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 79–88.
Ester, Kriegel, Sander, Xu (b51) 1996; vol. 96
Wang, Li, Lai, Gong, Hua (b24) 2022; 31
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Pang, Wang, Pan, Zhao, Wang, Guo (b47) 2024; 285
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2015, pp. 1116–1124.
Guo, Du, Hao, Zhang (b3) 2024; 147
B. Yang, J. Chen, M. Ye, Towards Grand Unified Representation Learning for Unsupervised Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11069–11079.
Zou, Chen (b5) 2024
K. Ren, L. Zhang, Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 393–402.
S. Xuan, S. Zhang, Intra-inter camera similarity for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11926–11935.
Pang, Wang, Wang, Zhao (b26) 2023; 263
Y. Hao, N. Wang, J. Li, X. Gao, HSME: Hypersphere manifold embedding for visible thermal person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8385–8392, 01.
Yang, Chen, Chen, Ye (b39) 2023
Ye, Lan, Wang, Yuen (b46) 2019; 15
Pang (10.1016/j.imavis.2025.105520_b26) 2023; 263
Yang (10.1016/j.imavis.2025.105520_b39) 2023
10.1016/j.imavis.2025.105520_b40
Chen (10.1016/j.imavis.2025.105520_b1) 2024
10.1016/j.imavis.2025.105520_b34
10.1016/j.imavis.2025.105520_b32
Lan (10.1016/j.imavis.2025.105520_b41) 2025
10.1016/j.imavis.2025.105520_b37
10.1016/j.imavis.2025.105520_b35
Pang (10.1016/j.imavis.2025.105520_b4) 2024
Yang (10.1016/j.imavis.2025.105520_b36) 2023
Ye (10.1016/j.imavis.2025.105520_b46) 2019; 15
Radford (10.1016/j.imavis.2025.105520_b15) 2021
10.1016/j.imavis.2025.105520_b52
Guo (10.1016/j.imavis.2025.105520_b3) 2024; 147
Goodfellow (10.1016/j.imavis.2025.105520_b21) 2014; vol. 27
10.1016/j.imavis.2025.105520_b50
Lan (10.1016/j.imavis.2025.105520_b27) 2023
10.1016/j.imavis.2025.105520_b43
10.1016/j.imavis.2025.105520_b42
Nguyen (10.1016/j.imavis.2025.105520_b45) 2017; 17
Ge (10.1016/j.imavis.2025.105520_b54) 2020
Pang (10.1016/j.imavis.2025.105520_b38) 2023
Ye (10.1016/j.imavis.2025.105520_b59) 2021; 17
Liang (10.1016/j.imavis.2025.105520_b11) 2021; 30
Li (10.1016/j.imavis.2025.105520_b48) 2024
Wang (10.1016/j.imavis.2025.105520_b24) 2022; 31
Li (10.1016/j.imavis.2025.105520_b23) 2020
Ye (10.1016/j.imavis.2025.105520_b33) 2020; 16
10.1016/j.imavis.2025.105520_b2
10.1016/j.imavis.2025.105520_b7
10.1016/j.imavis.2025.105520_b63
10.1016/j.imavis.2025.105520_b6
10.1016/j.imavis.2025.105520_b62
10.1016/j.imavis.2025.105520_b61
10.1016/j.imavis.2025.105520_b8
Ye (10.1016/j.imavis.2025.105520_b58) 2021; 44
10.1016/j.imavis.2025.105520_b60
10.1016/j.imavis.2025.105520_b12
10.1016/j.imavis.2025.105520_b56
10.1016/j.imavis.2025.105520_b55
Pang (10.1016/j.imavis.2025.105520_b9) 2024
10.1016/j.imavis.2025.105520_b10
10.1016/j.imavis.2025.105520_b14
Pang (10.1016/j.imavis.2025.105520_b47) 2024; 285
10.1016/j.imavis.2025.105520_b13
10.1016/j.imavis.2025.105520_b19
Kuhn (10.1016/j.imavis.2025.105520_b44) 1955; 2
10.1016/j.imavis.2025.105520_b17
Ester (10.1016/j.imavis.2025.105520_b51) 1996; vol. 96
Li (10.1016/j.imavis.2025.105520_b49) 2021
Zou (10.1016/j.imavis.2025.105520_b5) 2024
Zhou (10.1016/j.imavis.2025.105520_b16) 2022; 130
Ye (10.1016/j.imavis.2025.105520_b31) 2018; vol. 1
10.1016/j.imavis.2025.105520_b30
Kingma (10.1016/j.imavis.2025.105520_b53) 2014
Yin (10.1016/j.imavis.2025.105520_b57) 2023; 32
10.1016/j.imavis.2025.105520_b22
10.1016/j.imavis.2025.105520_b20
10.1016/j.imavis.2025.105520_b25
Pang (10.1016/j.imavis.2025.105520_b18) 2022; 25
10.1016/j.imavis.2025.105520_b29
10.1016/j.imavis.2025.105520_b28
References_xml – reference: B. Yang, J. Chen, M. Ye, Shallow-Deep Collaborative Learning for Unsupervised Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 16870–16879.
– reference: K. Ren, L. Zhang, Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 393–402.
– year: 2023
  ident: b36
  article-title: Translation, association and augmentation: Learning cross-modality re-identification from single-modality annotation
  publication-title: IEEE Trans. Image Process.
– volume: vol. 27
  year: 2014
  ident: b21
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 17
  start-page: 605
  year: 2017
  ident: b45
  article-title: Person recognition system based on a combination of body images from visible light and thermal cameras
  publication-title: Sensors
– reference: Z. Pang, L. Zhao, C. Wang, Dual-resolution fusion modeling for unsupervised cross-resolution person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2024, pp. 4063–4072.
– start-page: 143
  year: 2025
  end-page: 160
  ident: b41
  article-title: Clearclip: Decomposing clip representations for dense vision-language inference
  publication-title: European Conference on Computer Vision
– start-page: 1
  year: 2021
  end-page: 8
  ident: b49
  article-title: Unified batch all triplet loss for visible-infrared person re-identification
  publication-title: International Joint Conference on Neural Networks
– volume: 263
  year: 2023
  ident: b26
  article-title: Reliability modeling and contrastive learning for unsupervised person re-identification
  publication-title: Knowl.-Based Syst.
– volume: 25
  start-page: 6171
  year: 2022
  end-page: 6182
  ident: b18
  article-title: Camera invariant feature learning for unsupervised person re-identification
  publication-title: IEEE Trans. Multimed.
– volume: 32
  start-page: 2309
  year: 2023
  end-page: 2321
  ident: b57
  article-title: A real-time memory updating strategy for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: Z. Wu, M. Ye, Unsupervised visible-infrared person re-identification via progressive graph matching and alternate learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9548–9558.
– year: 2024
  ident: b5
  article-title: Modality interactive attention for cross-modality person re-identification
  publication-title: Image Vis. Comput.
– start-page: 8748
  year: 2021
  end-page: 8763
  ident: b15
  article-title: Learning transferable visual models from natural language supervision
  publication-title: International Conference on Machine Learning
– start-page: 483
  year: 2020
  end-page: 499
  ident: b23
  article-title: Joint visual and temporal consistency for unsupervised domain adaptive person re-identification
  publication-title: European Conference on Computer Vision
– volume: 44
  start-page: 2872
  year: 2021
  end-page: 2893
  ident: b58
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Xuan, S. Zhang, Intra-inter camera similarity for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11926–11935.
– reference: W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, J. Jiao, Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 994–1003.
– volume: 16
  start-page: 728
  year: 2020
  end-page: 739
  ident: b33
  article-title: Visible-infrared person re-identification via homogeneous augmented tri-modal learning
  publication-title: IEEE Trans. Inf. Forensics Secur.
– reference: H. Yu, X. Cheng, W. Peng, W. Liu, G. Zhao, Modality unifying network for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11185–11195.
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: b31
  article-title: Visible thermal person re-identification via dual-constrained top-ranking
  publication-title: IJCAI
– reference: M. Ye, W. Ruan, B. Du, M.Z. Shou, Channel augmented joint learning for visible-infrared recognition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13567–13576.
– year: 2023
  ident: b27
  article-title: Learning to purification for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: D. Li, X. Wei, X. Hong, Y. Gong, Infrared-visible cross-modal person re-identification with an x modality, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 4610–4617, 04.
– year: 2024
  ident: b48
  article-title: Inter-intra modality knowledge learning and clustering noise alleviation for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: Z. Dai, G. Wang, W. Yuan, S. Zhu, P. Tan, Cluster contrast for unsupervised person re-identification, in: Proceedings of the Asian Conference on Computer Vision, 2022, pp. 1142–1160.
– reference: B. Yang, J. Chen, M. Ye, Towards Grand Unified Representation Learning for Unsupervised Visible-Infrared Person Re-Identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11069–11079.
– volume: 31
  start-page: 6548
  year: 2022
  end-page: 6561
  ident: b24
  article-title: Offline-online associated camera-aware proxies for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer gan to bridge domain gap for person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 79–88.
– reference: C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, in: European Conference on Information Retrieval, 2005, pp. 345–359.
– reference: M. Yang, Z. Huang, P. Hu, T. Li, J. Lv, X. Peng, Learning with twin noisy labels for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14308–14317.
– year: 2023
  ident: b38
  article-title: Cross-modality hierarchical clustering and refinement for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang, Random erasing data augmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 13001–13008, 07.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: b44
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– year: 2014
  ident: b53
  article-title: Adam: A method for stochastic optimization
– year: 2020
  ident: b54
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
– reference: L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2015, pp. 1116–1124.
– volume: vol. 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b51
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: 17
  start-page: 386
  year: 2021
  end-page: 398
  ident: b59
  article-title: Dynamic tri-level relation mining with attentive graph for visible infrared re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 130
  start-page: 2337
  year: 2022
  end-page: 2348
  ident: b16
  article-title: Learning to prompt for vision-language models
  publication-title: Int. J. Comput. Vis.
– reference: H. Chen, B. Lagadec, F. Bremond, Ice: Inter-instance contrastive encoding for unsupervised person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14960–14969.
– volume: 15
  start-page: 407
  year: 2019
  end-page: 419
  ident: b46
  article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 285
  year: 2024
  ident: b47
  article-title: MIMR: Modality-invariance modeling and refinement for unsupervised visible-infrared person re-identification
  publication-title: Knowl.-Based Syst.
– reference: Y. Lin, X. Dong, L. Zheng, Y. Yan, Y. Yang, A bottom-up clustering approach to unsupervised person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8738–8745, 01.
– reference: Z. Hu, B. Yang, M. Ye, Empowering Visible-Infrared Person Re-Identification with Large Foundation Models, in: Advances in Neural Information Processing Systems.
– reference: A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong, J. Lai, RGB-infrared cross-modality person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017, pp. 5380–5389.
– reference: B. Yang, M. Ye, J. Chen, Z. Wu, Augmented dual-contrastive aggregation learning for unsupervised visible-infrared person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2022, pp. 2843–2851.
– reference: T. He, L. Shen, Y. Guo, G. Ding, Z. Guo, Secret: Self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 879–887, 1.
– reference: Y. Hao, N. Wang, J. Li, X. Gao, HSME: Hypersphere manifold embedding for visible thermal person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8385–8392, 01.
– reference: J. Feng, A. Wu, W.-S. Zheng, Shape-erased feature learning for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22752–22761.
– reference: Z. Chen, Z. Zhang, X. Tan, Y. Qu, Y. Xie, Unveiling the power of clip in unsupervised visible-infrared person re-identification, in: Proceedings of the ACM International Conference on Multimedia, 2023, pp. 3667–3675.
– volume: 30
  start-page: 6392
  year: 2021
  end-page: 6407
  ident: b11
  article-title: Homogeneous-to-heterogeneous: Unsupervised learning for RGB-infrared person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: Y. Zhang, H. Wang, Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2153–2162.
– volume: 147
  year: 2024
  ident: b3
  article-title: IGIE-net: Cross-modality person re-identification via intermediate modality image generation and discriminative information enhancement
  publication-title: Image Vis. Comput.
– year: 2024
  ident: b1
  article-title: Robust auxiliary modality is beneficial for video-based cloth-changing person re-identification
  publication-title: Image Vis. Comput.
– reference: S. Li, L. Sun, Q. Li, CLIP-ReID: exploiting vision-language model for image re-identification without concrete text labels, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023, pp. 1405–1413, 1.
– reference: Y. Cho, W.J. Kim, S. Hong, S.-E. Yoon, Part-based pseudo label refinement for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7308–7318.
– reference: Z. Zhao, B. Liu, Q. Chu, Y. Lu, N. Yu, Joint color-irrelevant consistency learning and identity-aware modality adaptation for visible-infrared cross modality person re-identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 3520–3528.
– year: 2024
  ident: b4
  article-title: Clothing-invariant contrastive learning for unsupervised person re-identification
  publication-title: Neural Netw.
– reference: X. Fang, Y. Yang, Y. Fu, Visible-infrared person re-identification via semantic alignment and affinity inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 11270–11279.
– year: 2024
  ident: b9
  article-title: Inter-modality similarity learning for unsupervised multi-modality person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2023
  ident: b39
  article-title: Dual consistency-constrained learning for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 30
  start-page: 6392
  year: 2021
  ident: 10.1016/j.imavis.2025.105520_b11
  article-title: Homogeneous-to-heterogeneous: Unsupervised learning for RGB-infrared person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3092578
– year: 2024
  ident: 10.1016/j.imavis.2025.105520_b5
  article-title: Modality interactive attention for cross-modality person re-identification
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.105128
– volume: 263
  year: 2023
  ident: 10.1016/j.imavis.2025.105520_b26
  article-title: Reliability modeling and contrastive learning for unsupervised person re-identification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110263
– volume: vol. 27
  year: 2014
  ident: 10.1016/j.imavis.2025.105520_b21
  article-title: Generative adversarial nets
– volume: 285
  year: 2024
  ident: 10.1016/j.imavis.2025.105520_b47
  article-title: MIMR: Modality-invariance modeling and refinement for unsupervised visible-infrared person re-identification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111350
– ident: 10.1016/j.imavis.2025.105520_b35
  doi: 10.1109/ICCV.2015.133
– year: 2024
  ident: 10.1016/j.imavis.2025.105520_b48
  article-title: Inter-intra modality knowledge learning and clustering noise alleviation for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 10.1016/j.imavis.2025.105520_b55
  doi: 10.1109/CVPR46437.2021.01175
– ident: 10.1016/j.imavis.2025.105520_b6
  doi: 10.1109/ICCV48922.2021.01331
– ident: 10.1016/j.imavis.2025.105520_b7
  doi: 10.1109/CVPR52729.2023.00214
– ident: 10.1016/j.imavis.2025.105520_b63
  doi: 10.1007/978-3-540-31865-1_25
– volume: 44
  start-page: 2872
  issue: 6
  year: 2021
  ident: 10.1016/j.imavis.2025.105520_b58
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054775
– ident: 10.1016/j.imavis.2025.105520_b42
  doi: 10.1609/aaai.v37i1.25225
– volume: 17
  start-page: 605
  issue: 3
  year: 2017
  ident: 10.1016/j.imavis.2025.105520_b45
  article-title: Person recognition system based on a combination of body images from visible light and thermal cameras
  publication-title: Sensors
  doi: 10.3390/s17030605
– ident: 10.1016/j.imavis.2025.105520_b37
  doi: 10.1109/ICCV51070.2023.01016
– year: 2023
  ident: 10.1016/j.imavis.2025.105520_b36
  article-title: Translation, association and augmentation: Learning cross-modality re-identification from single-modality annotation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3310338
– ident: 10.1016/j.imavis.2025.105520_b60
  doi: 10.1109/CVPR52688.2022.01391
– ident: 10.1016/j.imavis.2025.105520_b56
  doi: 10.1007/978-3-031-26351-4_20
– ident: 10.1016/j.imavis.2025.105520_b22
  doi: 10.1609/aaai.v33i01.33018738
– ident: 10.1016/j.imavis.2025.105520_b20
  doi: 10.1109/CVPR.2018.00110
– ident: 10.1016/j.imavis.2025.105520_b52
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.imavis.2025.105520_b10
  doi: 10.1109/CVPR52733.2024.00045
– year: 2023
  ident: 10.1016/j.imavis.2025.105520_b39
  article-title: Dual consistency-constrained learning for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 25
  start-page: 6171
  year: 2022
  ident: 10.1016/j.imavis.2025.105520_b18
  article-title: Camera invariant feature learning for unsupervised person re-identification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2022.3206662
– year: 2023
  ident: 10.1016/j.imavis.2025.105520_b27
  article-title: Learning to purification for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– ident: 10.1016/j.imavis.2025.105520_b32
  doi: 10.1609/aaai.v34i04.5891
– volume: 130
  start-page: 2337
  issue: 9
  year: 2022
  ident: 10.1016/j.imavis.2025.105520_b16
  article-title: Learning to prompt for vision-language models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01653-1
– ident: 10.1016/j.imavis.2025.105520_b62
  doi: 10.1109/ICCV51070.2023.01027
– start-page: 8748
  year: 2021
  ident: 10.1016/j.imavis.2025.105520_b15
  article-title: Learning transferable visual models from natural language supervision
– volume: 15
  start-page: 407
  year: 2019
  ident: 10.1016/j.imavis.2025.105520_b46
  article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2921454
– ident: 10.1016/j.imavis.2025.105520_b34
  doi: 10.1609/aaai.v35i4.16466
– ident: 10.1016/j.imavis.2025.105520_b13
  doi: 10.1109/CVPR52729.2023.00921
– ident: 10.1016/j.imavis.2025.105520_b14
  doi: 10.1145/3581783.3612050
– ident: 10.1016/j.imavis.2025.105520_b19
  doi: 10.1109/CVPR.2018.00016
– ident: 10.1016/j.imavis.2025.105520_b29
  doi: 10.1109/ICCV.2017.575
– ident: 10.1016/j.imavis.2025.105520_b2
  doi: 10.1145/3664647.3681067
– volume: 31
  start-page: 6548
  year: 2022
  ident: 10.1016/j.imavis.2025.105520_b24
  article-title: Offline-online associated camera-aware proxies for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3213193
– ident: 10.1016/j.imavis.2025.105520_b12
  doi: 10.1145/3503161.3548198
– ident: 10.1016/j.imavis.2025.105520_b8
  doi: 10.1109/ICCV51070.2023.01035
– year: 2024
  ident: 10.1016/j.imavis.2025.105520_b1
  article-title: Robust auxiliary modality is beneficial for video-based cloth-changing person re-identification
  publication-title: Image Vis. Comput.
– year: 2020
  ident: 10.1016/j.imavis.2025.105520_b54
– start-page: 143
  year: 2025
  ident: 10.1016/j.imavis.2025.105520_b41
  article-title: Clearclip: Decomposing clip representations for dense vision-language inference
– ident: 10.1016/j.imavis.2025.105520_b50
  doi: 10.1609/aaai.v34i07.7000
– volume: 17
  start-page: 386
  year: 2021
  ident: 10.1016/j.imavis.2025.105520_b59
  article-title: Dynamic tri-level relation mining with attentive graph for visible infrared re-identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3139224
– year: 2023
  ident: 10.1016/j.imavis.2025.105520_b38
  article-title: Cross-modality hierarchical clustering and refinement for unsupervised visible-infrared person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: 10.1016/j.imavis.2025.105520_b43
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.imavis.2025.105520_b44
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: vol. 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.imavis.2025.105520_b51
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 32
  start-page: 2309
  year: 2023
  ident: 10.1016/j.imavis.2025.105520_b57
  article-title: A real-time memory updating strategy for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3266166
– ident: 10.1016/j.imavis.2025.105520_b40
  doi: 10.1109/CVPR52733.2024.01596
– ident: 10.1016/j.imavis.2025.105520_b61
  doi: 10.1109/CVPR52729.2023.02179
– ident: 10.1016/j.imavis.2025.105520_b30
  doi: 10.1609/aaai.v33i01.33018385
– start-page: 1
  year: 2021
  ident: 10.1016/j.imavis.2025.105520_b49
  article-title: Unified batch all triplet loss for visible-infrared person re-identification
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: 10.1016/j.imavis.2025.105520_b31
  article-title: Visible thermal person re-identification via dual-constrained top-ranking
– volume: 16
  start-page: 728
  year: 2020
  ident: 10.1016/j.imavis.2025.105520_b33
  article-title: Visible-infrared person re-identification via homogeneous augmented tri-modal learning
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3001665
– year: 2024
  ident: 10.1016/j.imavis.2025.105520_b4
  article-title: Clothing-invariant contrastive learning for unsupervised person re-identification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2024.106477
– ident: 10.1016/j.imavis.2025.105520_b28
  doi: 10.1109/CVPR52688.2022.00716
– start-page: 483
  year: 2020
  ident: 10.1016/j.imavis.2025.105520_b23
  article-title: Joint visual and temporal consistency for unsupervised domain adaptive person re-identification
– year: 2024
  ident: 10.1016/j.imavis.2025.105520_b9
  article-title: Inter-modality similarity learning for unsupervised multi-modality person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2024.3408831
– year: 2014
  ident: 10.1016/j.imavis.2025.105520_b53
– ident: 10.1016/j.imavis.2025.105520_b17
  doi: 10.1109/ICCV48922.2021.01469
– volume: 147
  year: 2024
  ident: 10.1016/j.imavis.2025.105520_b3
  article-title: IGIE-net: Cross-modality person re-identification via intermediate modality image generation and discriminative information enhancement
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.105066
– ident: 10.1016/j.imavis.2025.105520_b25
  doi: 10.1609/aaai.v36i1.19970
SSID ssj0007079
Score 2.4621696
Snippet Visible–infrared person re-identification (VI-ReID) focuses on matching infrared and visible images of the same person. To reduce labeling costs, unsupervised...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105520
SubjectTerms Contrastive learning
Unsupervised learning
Visible–infrared person re-identification
Vision-language models
Title Image–text feature learning for unsupervised visible–infrared person re-identification
URI https://dx.doi.org/10.1016/j.imavis.2025.105520
Volume 158
WOSCitedRecordID wos001460008400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007079
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBVpkkuhbZq0NP1Ch96Cg9der-VjKAlJKSHQFJZcjKwP6iVxt-t1ybH_of-wv6QzGmlt2FKSQg8rFi2yjJ529Gb0NGLsnQCnJytSC_9va6KxHVeRtDKORho35XCNIaQ_5ufnYjotLvwtfa27TiBvGnF7W8z_K9RQB2Dj0dl7wL16KFTAdwAdSoAdyjsBf3YDJiJoGFIUdhxY49J3hisiSDrZNW03R0vRAufEI-bVdd8MXmThpOlzx8gPFiaqtRcW9VjOBj26XQg6qe506t0yLIqo7ulog6e2pq-88KHqqy_1t3oYfUiyXutHIbG1YzHOciUTMLOCMoavzCylaF8z2RQ9mB3WN5hW4RA7wcuHsyTul6iVcPATPhqfDMwNPEkhHrCtBCYbmOSto7Pj6YfVKoyZ_yi-Rq8Sjk06bd96X3-mJQOqcbnDHnsfgR8Rtk_Zhml22RPvL3Bvjdtd9nCQTHKPXTkYfv34iZBzDzkPkHOAnA8h5x5yaBDA5gQ2XwP7Gft8cnz5_jTyN2dECvjXEkobAzGdyKISukiFNPFIikqbLNE2E0mhdVyNpbVSpCrDWGIxyY0sUiNGNslt-pxtNl8b84LxXI8V_JyPlAHqDO621blSwMMlrHVKpfssCgNXzilBShmUg7OSBrrEgS5poPdZHka39CSPyFsJE-KvLV_-c8tX7BE4Mhl-SOX3mm0uF515w7bV92XdLt762fMbq-J8DA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image%E2%80%93text+feature+learning+for+unsupervised+visible%E2%80%93infrared+person+re-identification&rft.jtitle=Image+and+vision+computing&rft.au=Guo%2C+Jifeng&rft.au=Pang%2C+Zhiqi&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.volume=158&rft_id=info:doi/10.1016%2Fj.imavis.2025.105520&rft.externalDocID=S0262885625001088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon