FactorVQVAE: Discrete latent factor model via Vector Quantized Variational Autoencoder
This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel framework for predicting cross-sectional stock returns and constructing systematic investment portfolios. The model employs a two-stage architectur...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 318; s. 113460 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
07.06.2025
|
| Predmet: | |
| ISSN: | 0950-7051 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel framework for predicting cross-sectional stock returns and constructing systematic investment portfolios. The model employs a two-stage architecture to improve the extraction and utilization of latent financial factors. In the first stage, an encoder–decoder-quantizer compresses high-dimensional input data into discrete latent factors through vector quantization, addressing posterior collapse and ensuring distinct representations. In the second stage, an autoregressive Transformer captures sequential dependencies among these latent factors, enabling precise return predictions. Empirical results in the CSI300 and S&P500 markets demonstrate FactorVQVAE’s superior performance. The model achieves the best Rank IC and Rank ICIR scores, surpassing the state-of-the-art latent factor models in varying market conditions. In portfolio evaluations, FactorVQVAE consistently excels in both Top-k Drop-n and Long–Short strategies, translating predictive accuracy into robust investment performance. In particular, it delivers the highest risk-adjusted returns, highlighting its ability to balance returns and risks effectively. These findings position FactorVQVAE as a significant advancement in integrating modern deep learning methodologies with financial factor modeling. Its adaptability, robustness, and exceptional performance in portfolio investment establish it as a promising tool for systematic investing and financial analytics.
[Display omitted]
•This study introduces FactorVQVAE, integrating VQVAE into dynamic factor modeling.•A two-stage design extracts latent factors and models sequential dependencies.•FactorVQVAE outperforms benchmarks in return prediction for CSI300 and S&P500.•FactorVQVAE demonstrates robustness in portfolio investment across different market conditions. |
|---|---|
| AbstractList | This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel framework for predicting cross-sectional stock returns and constructing systematic investment portfolios. The model employs a two-stage architecture to improve the extraction and utilization of latent financial factors. In the first stage, an encoder–decoder-quantizer compresses high-dimensional input data into discrete latent factors through vector quantization, addressing posterior collapse and ensuring distinct representations. In the second stage, an autoregressive Transformer captures sequential dependencies among these latent factors, enabling precise return predictions. Empirical results in the CSI300 and S&P500 markets demonstrate FactorVQVAE’s superior performance. The model achieves the best Rank IC and Rank ICIR scores, surpassing the state-of-the-art latent factor models in varying market conditions. In portfolio evaluations, FactorVQVAE consistently excels in both Top-k Drop-n and Long–Short strategies, translating predictive accuracy into robust investment performance. In particular, it delivers the highest risk-adjusted returns, highlighting its ability to balance returns and risks effectively. These findings position FactorVQVAE as a significant advancement in integrating modern deep learning methodologies with financial factor modeling. Its adaptability, robustness, and exceptional performance in portfolio investment establish it as a promising tool for systematic investing and financial analytics.
[Display omitted]
•This study introduces FactorVQVAE, integrating VQVAE into dynamic factor modeling.•A two-stage design extracts latent factors and models sequential dependencies.•FactorVQVAE outperforms benchmarks in return prediction for CSI300 and S&P500.•FactorVQVAE demonstrates robustness in portfolio investment across different market conditions. |
| ArticleNumber | 113460 |
| Author | Song, Jae Wook Ock, Seung Eun Kim, Namhyoung |
| Author_xml | – sequence: 1 givenname: Namhyoung orcidid: 0000-0003-4191-8830 surname: Kim fullname: Kim, Namhyoung email: x7jeon8gi@hanyang.ac.kr – sequence: 2 givenname: Seung Eun surname: Ock fullname: Ock, Seung Eun email: ockdaniel@hanyang.ac.kr – sequence: 3 givenname: Jae Wook orcidid: 0000-0001-6455-6524 surname: Song fullname: Song, Jae Wook email: jwsong@hanyang.ac.kr |
| BookMark | eNp9kFFLwzAUhfMwwW36D3zIH2hN0qZZfRDG3FQYyED7GtLkBjK7RpJsMH-9dfXZpwv33nM455uhSe97QOiOkpwSWt3v88_ex3PMGWE8p7QoKzJBU1JzkgnC6TWaxbgnhDBGF1PUbJROPjS7Zrl-wE8u6gAJcKcS9AnbyxEfvIEOn5zCDVwWu6Pqk_sGgxsVnErO96rDy2Py0OvhOdygK6u6CLd_c44-Nuv31Uu2fXt-XS23maYLnrIWBLVcc1pTUpJqAQUTtW5tZUUNNTFtYQFaUWjGQFGoDW9LIRjwVvDW1LqYo3L01cHHGMDKr-AOKpwlJfKXh9zLkYf85SFHHoPscZTBkO3kIMio3RAdjAtDQ2m8-9_gB-72cIo |
| Cites_doi | 10.1109/CVPR52688.2022.01103 10.1111/j.1540-6261.1997.tb03808.x 10.1109/CVPR46437.2021.01268 10.1016/j.jfineco.2014.10.010 10.1109/CVPR.2017.113 10.1111/j.1540-6261.2011.01671.x 10.2307/2325486 10.1145/2939672.2939785 10.1016/0304-4076(92)90072-Y 10.1016/j.jeconom.2020.07.009 10.1609/aaai.v38i1.27767 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.113460 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_113460 S0950705125005076 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c185t-be71f5c519104068e3279cbf6f79e90db3feeb73c22ea1e9d5b4772e5b75bd9c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473508700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:54:42 EST 2025 Sat Jun 07 17:01:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Portfolio investment Transformer Vector quantization Dynamic latent factor model Autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c185t-be71f5c519104068e3279cbf6f79e90db3feeb73c22ea1e9d5b4772e5b75bd9c3 |
| ORCID | 0000-0001-6455-6524 0000-0003-4191-8830 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_113460 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113460 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-07 |
| PublicationDateYYYYMMDD | 2025-06-07 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (b22) 2021 P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12873–12883. Carhart (b13) 1997; 52 Hendrycks, Gimpel (b30) 2016 Yang, Liu, Zhou, Bian, Liu (b31) 2020 Duan, Wang, Zhang, Li (b6) 2022 Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b16) 2017 Liu, Hu, Zhang, Wu, Wang, Ma, Long (b19) 2023 Lundberg (b32) 2017 C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165. Chung, Gulcehre, Cho, Bengio (b15) 2014 Gu, Kelly, Xiu (b7) 2021; 222 T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. Van den Oord, Kalchbrenner, Espeholt, Vinyals, Graves (b21) 2016; 29 T. Li, Z. Liu, Y. Shen, X. Wang, H. Chen, S. Huang, MASTER: Market-Guided Stock Transformer for Stock Price Forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, 2024, pp. 162–170. Fama, French (b3) 2015; 116 Jensen (b29) 1968; 23 Van Den Oord, Vinyals (b8) 2017; 30 Sharpe (b11) 1964; 19 Fama (b27) 1970; 25 Kingma, Welling (b4) 2013 Ng, Engle, Rothschild (b28) 1992; 52 Cochrane (b1) 2011; 66 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b18) 2017; 30 Rezende, Mohamed (b9) 2015 Huh, Cheung, Agrawal, Isola (b26) 2023 H. Chang, H. Zhang, L. Jiang, C. Liu, W.T. Freeman, Maskgit: Masked generative image transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11315–11325. Fama, French (b2) 1992; 47 Ross (b12) 1973 Wei, Rao, Dai, Lin (b5) 2023 Lee, Malacarne, Aune (b25) 2023 Nelson, Pereira, De Oliveira (b10) 2017 Veličković (10.1016/j.knosys.2025.113460_b16) 2017 Vaswani (10.1016/j.knosys.2025.113460_b18) 2017; 30 Fama (10.1016/j.knosys.2025.113460_b27) 1970; 25 Ng (10.1016/j.knosys.2025.113460_b28) 1992; 52 Jensen (10.1016/j.knosys.2025.113460_b29) 1968; 23 Yang (10.1016/j.knosys.2025.113460_b31) 2020 Hendrycks (10.1016/j.knosys.2025.113460_b30) 2016 Fama (10.1016/j.knosys.2025.113460_b2) 1992; 47 Carhart (10.1016/j.knosys.2025.113460_b13) 1997; 52 Chung (10.1016/j.knosys.2025.113460_b15) 2014 Van Den Oord (10.1016/j.knosys.2025.113460_b8) 2017; 30 Cochrane (10.1016/j.knosys.2025.113460_b1) 2011; 66 10.1016/j.knosys.2025.113460_b24 10.1016/j.knosys.2025.113460_b23 10.1016/j.knosys.2025.113460_b20 Nelson (10.1016/j.knosys.2025.113460_b10) 2017 Lundberg (10.1016/j.knosys.2025.113460_b32) 2017 Ross (10.1016/j.knosys.2025.113460_b12) 1973 Duan (10.1016/j.knosys.2025.113460_b6) 2022 Fama (10.1016/j.knosys.2025.113460_b3) 2015; 116 Sharpe (10.1016/j.knosys.2025.113460_b11) 1964; 19 Huh (10.1016/j.knosys.2025.113460_b26) 2023 Gu (10.1016/j.knosys.2025.113460_b7) 2021; 222 Van den Oord (10.1016/j.knosys.2025.113460_b21) 2016; 29 Ramesh (10.1016/j.knosys.2025.113460_b22) 2021 Kingma (10.1016/j.knosys.2025.113460_b4) 2013 Rezende (10.1016/j.knosys.2025.113460_b9) 2015 Liu (10.1016/j.knosys.2025.113460_b19) 2023 10.1016/j.knosys.2025.113460_b17 Wei (10.1016/j.knosys.2025.113460_b5) 2023 Lee (10.1016/j.knosys.2025.113460_b25) 2023 10.1016/j.knosys.2025.113460_b14 |
| References_xml | – year: 2023 ident: b25 article-title: Vector quantized time series generation with a bidirectional prior model – volume: 47 start-page: 427 year: 1992 end-page: 465 ident: b2 article-title: The cross-section of expected stock returns publication-title: J. Financ. – start-page: 1530 year: 2015 end-page: 1538 ident: b9 article-title: Variational inference with normalizing flows publication-title: International Conference on Machine Learning – volume: 23 start-page: 389 year: 1968 end-page: 416 ident: b29 article-title: The performance of mutual funds in the period 1945–1964 publication-title: J. Financ. – volume: 66 start-page: 1047 year: 2011 end-page: 1108 ident: b1 article-title: Presidential address: Discount rates publication-title: J. Financ. – volume: 30 year: 2017 ident: b18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – reference: P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12873–12883. – year: 2014 ident: b15 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 25 start-page: 383 year: 1970 end-page: 417 ident: b27 article-title: Efficient capital markets publication-title: J. Financ. – volume: 52 start-page: 245 year: 1992 end-page: 266 ident: b28 article-title: A multi-dynamic-factor model for stock returns publication-title: J. Econometrics – start-page: 1419 year: 2017 end-page: 1426 ident: b10 article-title: Stock market’s price movement prediction with LSTM neural networks publication-title: 2017 International Joint Conference on Neural Networks – volume: 116 start-page: 1 year: 2015 end-page: 22 ident: b3 article-title: A five-factor asset pricing model publication-title: J. Financ. Econ. – year: 1973 ident: b12 article-title: Return, Risk and Arbitrage – start-page: 8821 year: 2021 end-page: 8831 ident: b22 article-title: Zero-shot text-to-image generation publication-title: International Conference on Machine Learning – year: 2023 ident: b26 article-title: Straightening out the straight-through estimator: Overcoming optimization challenges in vector quantized networks – year: 2017 ident: b32 article-title: A unified approach to interpreting model predictions – reference: H. Chang, H. Zhang, L. Jiang, C. Liu, W.T. Freeman, Maskgit: Masked generative image transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11315–11325. – year: 2020 ident: b31 article-title: Qlib: An ai-oriented quantitative investment platform – start-page: 4468 year: 2022 end-page: 4476 ident: b6 article-title: Factorvae: A probabilistic dynamic factor model based on variational autoencoder for predicting cross-sectional stock returns publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36 – year: 2013 ident: b4 article-title: Auto-encoding variational bayes – volume: 29 year: 2016 ident: b21 article-title: Conditional image generation with pixelcnn decoders publication-title: Adv. Neural Inf. Process. Syst. – volume: 222 start-page: 429 year: 2021 end-page: 450 ident: b7 article-title: Autoencoder asset pricing models publication-title: J. Econometrics – year: 2016 ident: b30 article-title: Gaussian error linear units (gelus) – volume: 19 start-page: 425 year: 1964 end-page: 442 ident: b11 article-title: Capital asset prices: A theory of market equilibrium under conditions of risk publication-title: J. Financ. – year: 2023 ident: b5 article-title: HireVAE: An online and adaptive factor model based on hierarchical and regime-switch VAE – reference: T. Li, Z. Liu, Y. Shen, X. Wang, H. Chen, S. Huang, MASTER: Market-Guided Stock Transformer for Stock Price Forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, 2024, pp. 162–170. – reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. – reference: C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165. – year: 2017 ident: b16 article-title: Graph attention networks – volume: 52 start-page: 57 year: 1997 end-page: 82 ident: b13 article-title: On persistence in mutual fund performance publication-title: J. Financ. – volume: 30 year: 2017 ident: b8 article-title: Neural discrete representation learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: b19 article-title: Itransformer: Inverted transformers are effective for time series forecasting – volume: 19 start-page: 425 issue: 3 year: 1964 ident: 10.1016/j.knosys.2025.113460_b11 article-title: Capital asset prices: A theory of market equilibrium under conditions of risk publication-title: J. Financ. – volume: 47 start-page: 427 issue: 2 year: 1992 ident: 10.1016/j.knosys.2025.113460_b2 article-title: The cross-section of expected stock returns publication-title: J. Financ. – year: 2017 ident: 10.1016/j.knosys.2025.113460_b16 – year: 2016 ident: 10.1016/j.knosys.2025.113460_b30 – volume: 30 year: 2017 ident: 10.1016/j.knosys.2025.113460_b18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 8821 year: 2021 ident: 10.1016/j.knosys.2025.113460_b22 article-title: Zero-shot text-to-image generation – year: 2014 ident: 10.1016/j.knosys.2025.113460_b15 – ident: 10.1016/j.knosys.2025.113460_b24 doi: 10.1109/CVPR52688.2022.01103 – year: 2017 ident: 10.1016/j.knosys.2025.113460_b32 – start-page: 1530 year: 2015 ident: 10.1016/j.knosys.2025.113460_b9 article-title: Variational inference with normalizing flows – year: 2023 ident: 10.1016/j.knosys.2025.113460_b19 – volume: 52 start-page: 57 issue: 1 year: 1997 ident: 10.1016/j.knosys.2025.113460_b13 article-title: On persistence in mutual fund performance publication-title: J. Financ. doi: 10.1111/j.1540-6261.1997.tb03808.x – ident: 10.1016/j.knosys.2025.113460_b23 doi: 10.1109/CVPR46437.2021.01268 – year: 2023 ident: 10.1016/j.knosys.2025.113460_b26 – volume: 23 start-page: 389 issue: 2 year: 1968 ident: 10.1016/j.knosys.2025.113460_b29 article-title: The performance of mutual funds in the period 1945–1964 publication-title: J. Financ. – year: 2020 ident: 10.1016/j.knosys.2025.113460_b31 – year: 2013 ident: 10.1016/j.knosys.2025.113460_b4 – volume: 116 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.knosys.2025.113460_b3 article-title: A five-factor asset pricing model publication-title: J. Financ. Econ. doi: 10.1016/j.jfineco.2014.10.010 – volume: 29 year: 2016 ident: 10.1016/j.knosys.2025.113460_b21 article-title: Conditional image generation with pixelcnn decoders publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.knosys.2025.113460_b14 doi: 10.1109/CVPR.2017.113 – start-page: 4468 year: 2022 ident: 10.1016/j.knosys.2025.113460_b6 article-title: Factorvae: A probabilistic dynamic factor model based on variational autoencoder for predicting cross-sectional stock returns – volume: 66 start-page: 1047 issue: 4 year: 2011 ident: 10.1016/j.knosys.2025.113460_b1 article-title: Presidential address: Discount rates publication-title: J. Financ. doi: 10.1111/j.1540-6261.2011.01671.x – volume: 25 start-page: 383 issue: 2 year: 1970 ident: 10.1016/j.knosys.2025.113460_b27 article-title: Efficient capital markets publication-title: J. Financ. doi: 10.2307/2325486 – start-page: 1419 year: 2017 ident: 10.1016/j.knosys.2025.113460_b10 article-title: Stock market’s price movement prediction with LSTM neural networks – ident: 10.1016/j.knosys.2025.113460_b17 doi: 10.1145/2939672.2939785 – volume: 52 start-page: 245 issue: 1–2 year: 1992 ident: 10.1016/j.knosys.2025.113460_b28 article-title: A multi-dynamic-factor model for stock returns publication-title: J. Econometrics doi: 10.1016/0304-4076(92)90072-Y – volume: 222 start-page: 429 issue: 1 year: 2021 ident: 10.1016/j.knosys.2025.113460_b7 article-title: Autoencoder asset pricing models publication-title: J. Econometrics doi: 10.1016/j.jeconom.2020.07.009 – year: 1973 ident: 10.1016/j.knosys.2025.113460_b12 – year: 2023 ident: 10.1016/j.knosys.2025.113460_b5 – ident: 10.1016/j.knosys.2025.113460_b20 doi: 10.1609/aaai.v38i1.27767 – volume: 30 year: 2017 ident: 10.1016/j.knosys.2025.113460_b8 article-title: Neural discrete representation learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: 10.1016/j.knosys.2025.113460_b25 |
| SSID | ssj0002218 |
| Score | 2.4260125 |
| Snippet | This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 113460 |
| SubjectTerms | Autoencoder Dynamic latent factor model Portfolio investment Transformer Vector quantization |
| Title | FactorVQVAE: Discrete latent factor model via Vector Quantized Variational Autoencoder |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.113460 |
| Volume | 318 |
| WOSCitedRecordID | wos001473508700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002218 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa6KEXWkoroA_50NvKq42drNe9rdpFLVSrVkC0t8h2HLHQZhFkEe2v7_iVDQWhcuglipzEtjKfxt-MxzMIva8ARhkzjAy1HJKUKUWE1JJUUo8AQoILt6Obf-XT6Wg2E9_CRvulKyfA63p0fS3O_6uooQ2EbY_OPkDcbafQAPcgdLiC2OH6T4LfcxV08u_5eGLN_U9zUAzAjHs_gFXaREzusa-A07uay17u_PY2urNu5r-Bf-ZgPkcX4XjZLGyqyzIE8QYaexA9ccSugmXIB73aF_Ilmqfy58kvq01aT67XvYcG2nqTZYvLwxgXLG10T2D9wRVBMxcyxW_4FAcEZJ901SsL-tUryCRhqS8gcEt3ezfCaf-sXsCs-3aA_ur1m6my_1rC2sDCGLN2WvheCttL4Xt5jNYpzwRo7_Xxl8lsv12wKXVu4Hb28YSlCwO8PZu7GUyHlRw9RxvBnMBjD4NN9MjUL9CzWKoDB829hfIOKj7giAnsMYE9JrDDBAZMYI8J3GICdzCBO5h4iY73JkcfP5NQUoNoIGYNUYYnVaaBtoMZPhiODKNcaFUNKy6MGJSKVcYozjSlRiZGlJlKwf4ymeKZKoVmr9BavajNNsJJaioqlT20J1JllFICyGKmKVjUqkrUDiLxNxXnPnNKcZ94dhCP_7II7M-zugIAcu-Xuw8c6TV6ukLvG7TWXCzNW_REXzXzy4t3AR1_AMjifvc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FactorVQVAE%3A+Discrete+latent+factor+model+via+Vector+Quantized+Variational+Autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Kim%2C+Namhyoung&rft.au=Ock%2C+Seung+Eun&rft.au=Song%2C+Jae+Wook&rft.date=2025-06-07&rft.issn=0950-7051&rft.volume=318&rft.spage=113460&rft_id=info:doi/10.1016%2Fj.knosys.2025.113460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2025_113460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |