Automatic Semantic Segmentation and Classification of Remote Sensing Image Data for Flood Detection Using Novel LSTM Neural Network

Floods are one of the main threats to human life and the property of natural disasters, especially in highly populated urban areas. Fast and accurate extraction of submerged area risky to supporting emergency planning and providing damage assessment in spatial and temporal measurements. Satellite mu...

Full description

Saved in:
Bibliographic Details
Published in:SN computer science Vol. 5; no. 8; p. 992
Main Authors: Sonavale, Amruta, Chakkaravarthy, Midhun, Srinivasa Rao, Surampudi, Salleh, Hishamuddin Bin M., Jadhav, Jagannath
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
Subjects:
ISSN:2661-8907, 2662-995X, 2661-8907
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Floods are one of the main threats to human life and the property of natural disasters, especially in highly populated urban areas. Fast and accurate extraction of submerged area risky to supporting emergency planning and providing damage assessment in spatial and temporal measurements. Satellite multispectral images have limited bands, low resolution, and information that can be analyzed. The bands are merged to form a unified image that incorporates data from all bands. However, current contouring techniques are affected by chromatic aberrations. This study uses intensity-hue-saturation and higher-order statistics to enhance the spatial and spectral information of remote sensing images in combination with segmentation and classification methods. High performance can be shown by implementing edge detection technology to identify objects using structure in Remote Sensing Images (RSI). The parameters used to evaluate the implementation of the proposed edge detection method included root mean square error, correlation coefficient, structural similarity index measure, and the error associated with the mean spectral analysis. The dimensionality of multiband RSI can be reduced based on higher-order data statistics using independent component analysis. Furthermore, images can be clustered using high-resolution panchromatic RSI models. The proposed technique can convert the pixel powers into the sign powers of adjacent higher-order partitions during region segmentation. Pixel intensities can be analyzed using preprocessing techniques such as denoising, which gradually stabilizes the object’s mean value. This method is shown not to impact the original seed level. In this proposed work wiener filtering is usedfornoisesuppressionintheremote-sensingimage.Afterthesecondstageofthe process, the structural region is extracted from the preprocessing image. After detecting structural regions in the RSI, the different feature values are obtained for further classification. The proposed Long Short-Term Memory (LSTM) neural network algorithm was used to predict the flood. Implementing the proposed LSTM neural network algorithm can automatically transform large-scale data sets and implement non-linear decision-making functions through the histological characteristics of multiple layers of neurons. This work compares the accuracy of flood forecasting in the collected data set using the proposed LSTM neural network algorithm. The performance of the proposed technology is analyzed in terms of accuracy, sensitivity, and specificity.
AbstractList Floods are one of the main threats to human life and the property of natural disasters, especially in highly populated urban areas. Fast and accurate extraction of submerged area risky to supporting emergency planning and providing damage assessment in spatial and temporal measurements. Satellite multispectral images have limited bands, low resolution, and information that can be analyzed. The bands are merged to form a unified image that incorporates data from all bands. However, current contouring techniques are affected by chromatic aberrations. This study uses intensity-hue-saturation and higher-order statistics to enhance the spatial and spectral information of remote sensing images in combination with segmentation and classification methods. High performance can be shown by implementing edge detection technology to identify objects using structure in Remote Sensing Images (RSI). The parameters used to evaluate the implementation of the proposed edge detection method included root mean square error, correlation coefficient, structural similarity index measure, and the error associated with the mean spectral analysis. The dimensionality of multiband RSI can be reduced based on higher-order data statistics using independent component analysis. Furthermore, images can be clustered using high-resolution panchromatic RSI models. The proposed technique can convert the pixel powers into the sign powers of adjacent higher-order partitions during region segmentation. Pixel intensities can be analyzed using preprocessing techniques such as denoising, which gradually stabilizes the object’s mean value. This method is shown not to impact the original seed level. In this proposed work wiener filtering is usedfornoisesuppressionintheremote-sensingimage.Afterthesecondstageofthe process, the structural region is extracted from the preprocessing image. After detecting structural regions in the RSI, the different feature values are obtained for further classification. The proposed Long Short-Term Memory (LSTM) neural network algorithm was used to predict the flood. Implementing the proposed LSTM neural network algorithm can automatically transform large-scale data sets and implement non-linear decision-making functions through the histological characteristics of multiple layers of neurons. This work compares the accuracy of flood forecasting in the collected data set using the proposed LSTM neural network algorithm. The performance of the proposed technology is analyzed in terms of accuracy, sensitivity, and specificity.
ArticleNumber 992
Author Salleh, Hishamuddin Bin M.
Sonavale, Amruta
Chakkaravarthy, Midhun
Jadhav, Jagannath
Srinivasa Rao, Surampudi
Author_xml – sequence: 1
  givenname: Amruta
  surname: Sonavale
  fullname: Sonavale, Amruta
  email: amruta.ps713@gmail.com
  organization: Department of Computer Science and Multimedia, Lincoln University College
– sequence: 2
  givenname: Midhun
  surname: Chakkaravarthy
  fullname: Chakkaravarthy, Midhun
  organization: Faculty of Computer Science and Multimedia, Lincoln University College
– sequence: 3
  givenname: Surampudi
  surname: Srinivasa Rao
  fullname: Srinivasa Rao, Surampudi
  organization: ECE, Malla Reddy College of Engineering and Technology
– sequence: 4
  givenname: Hishamuddin Bin M.
  surname: Salleh
  fullname: Salleh, Hishamuddin Bin M.
  organization: Faculty of Computer Science and Multimedia, Lincoln University College
– sequence: 5
  givenname: Jagannath
  surname: Jadhav
  fullname: Jadhav, Jagannath
  organization: Faculty of Electronics and Communication Engineering, KLE College of Engineering and Technology
BookMark eNp9kE9PwkAQxTcGExH5Ap428Vzd_22PBERJUBOB82YpU1Jsd3G3aDz7xV2piZ68zLxMfu9N8s5RzzoLCF1Sck0JSW-CYHmaJ4SJhHDOVZKfoD5TiiZZTtLeH32GhiHsCCFMEiGU7KPP0aF1jWmrAi-gMbYT2wZsG4_OYmM3eFybEKqyKrqTK_EzNK6FSNpQ2S2eNWYLeGJag0vn8bR2boMn0EJxNKyO0KN7gxrPF8sH_AgHb-q42nfnXy7QaWnqAMOfPUCr6e1yfJ_Mn-5m49E8KWgm8zgZSE5VmgORRipQRVZKkhrFQWXCMJ4qvpZrkRohDVGiyCQFKQVww1Kx5gN01eXuvXs9QGj1zh28jS81p4yKjBDJIsU6qvAuBA-l3vuqMf5DU6K_-9Zd3zr2rY996zyaeGcKEbZb8L_R_7i-ADpUhDA
Cites_doi 10.1109/LGRS.2020.3008011
10.1109/IGARSS39084.2020.9324346
10.1109/ACCESS.2020.3027839
10.1109/IGARSS.2019.8900344
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00053
10.1109/SMARTCOMP50058.2020.00088
10.1109/IGARSS.2019.8897869
10.1109/IGARSS.2019.8899282
10.1109/IDAACS.2019.8924407
10.1109/ICAC3N53548.2021.9725595
10.1109/JSYST.2020.2984797
10.1109/ACCESS.2021.3090981
10.1109/LGRS.2018.2871849
10.1109/ICSES52305.2021.9633803
10.1109/CSICC52343.2021.9420594
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s42979-024-03336-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_024_03336_9
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1859-c12e531679e05a56e6c8f507a63e684a23763b5b47a45a064c851e554e3a274b3
IEDL.DBID RSV
ISSN 2661-8907
2662-995X
IngestDate Tue Dec 02 07:52:32 EST 2025
Sat Nov 29 01:32:54 EST 2025
Fri Feb 21 02:37:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Adaptive median filtering
Flood detection
Neural network algorithm
LSTM
Versatile Linear Edge Detection (VLED) algorithm
Structural object son the RSI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1859-c12e531679e05a56e6c8f507a63e684a23763b5b47a45a064c851e554e3a274b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3121480052
PQPubID 6623307
ParticipantIDs proquest_journals_3121480052
crossref_primary_10_1007_s42979_024_03336_9
springer_journals_10_1007_s42979_024_03336_9
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Avanzato R, Beritelli F, Cavallaro A, Cuccia M and Lombardo T. A river flood monitoring technique based on image splitting Algorithms. In: 10th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), 2019;pp. 507–11.
Krishna Panama VS and Rao YS. Change detection based flood mapping of 2015 flood event of Chennai city using sentinel-1 SAR images. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 9729–32.
Ohki M and Shimada M. Flood detection in built-up area using interferometric SAR data by PALSAR-2. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 4640–2.
LeeJHongJParkGKimHSLeeSSeoTContaminated facade identification using convolutional neural network and image processingIEEE Access2020818001018002110.1109/ACCESS.2020.3027839
RahnemoonfarMChowdhuryTSarkarAVarshneyDYariMMurphyRRFloodNet: a High-resolution aerial imagery dataset for post flood scene understandingIEEE Access20219896448965410.1109/ACCESS.2021.3090981
Basnyat B, Singh N, Roy N and Gangopadhyay A. Design and deployment of a flash flood monitoring IOT: challenges and opportunities. In: IEEE International Conference on Smart Computing (SMARTCOMP), 2020;pp. 422–7.
ZhaoMLingQLiFAn iterative feedback-based change detection algorithm for flood mapping in SAR imagesIEEE Geosci Remote Sens Lett201916223123510.1109/LGRS.2018.2871849
NishanthNMujeebAModeling and detection of flooding-based denial-of-service attack in wireless Ad Hoc network using bayesian inferenceIEEE Syst J2021151172610.1109/JSYST.2020.2984797
Samikwa E, Voigt T and Eriksson J. Flood prediction using IOT and artificial neural networks with edge computing. In: International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom), 2020;pp. 234–40.
PelichRChiniMHostacheRMatgenPLópez-MartinezCCoastline detection based on sentinel-1 time series for ship- and flood-monitoring applicationsIEEE Geosci Remote Sens Lett202118101771177510.1109/LGRS.2020.3008011
Agrawal T, Suraj and Meleet M. Classification of natural disaster using satellite and drone images with CNN using transfer learning. In: International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 2021;pp. 1–5.
Lê TT, Froger J-L and Hrysiewicz A. Multiscale change analysis for SAR image time series: application to inundation detection. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 118–21.
Jo M and Osmanoglu B. Generating flood probability map based on the combined use of synthetic aperture radar and optical imagery. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2020;pp. 684–7.
Geetha PS, Sirisha J, Swathi K and Rao PRK. GUI information system based flood detection using Gaussian distance support vector machine. In: 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021;pp. 1639–45.
Mousavi FS, Yousefi S, Abghari H and Ghasemzadeh A. Design of an IoT-based flood early detection system using machine learning. In: 26th International Computer Conference, Computer Society of Iran (CSICC), 2021;pp. 1–7.
3336_CR1
3336_CR2
3336_CR9
3336_CR5
3336_CR6
3336_CR4
3336_CR11
3336_CR10
N Nishanth (3336_CR14) 2021; 15
J Lee (3336_CR7) 2020; 8
M Zhao (3336_CR3) 2019; 16
3336_CR13
3336_CR12
R Pelich (3336_CR8) 2021; 18
M Rahnemoonfar (3336_CR15) 2021; 9
References_xml – reference: Mousavi FS, Yousefi S, Abghari H and Ghasemzadeh A. Design of an IoT-based flood early detection system using machine learning. In: 26th International Computer Conference, Computer Society of Iran (CSICC), 2021;pp. 1–7.
– reference: Avanzato R, Beritelli F, Cavallaro A, Cuccia M and Lombardo T. A river flood monitoring technique based on image splitting Algorithms. In: 10th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), 2019;pp. 507–11.
– reference: Ohki M and Shimada M. Flood detection in built-up area using interferometric SAR data by PALSAR-2. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 4640–2.
– reference: Lê TT, Froger J-L and Hrysiewicz A. Multiscale change analysis for SAR image time series: application to inundation detection. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 118–21.
– reference: Jo M and Osmanoglu B. Generating flood probability map based on the combined use of synthetic aperture radar and optical imagery. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2020;pp. 684–7.
– reference: NishanthNMujeebAModeling and detection of flooding-based denial-of-service attack in wireless Ad Hoc network using bayesian inferenceIEEE Syst J2021151172610.1109/JSYST.2020.2984797
– reference: PelichRChiniMHostacheRMatgenPLópez-MartinezCCoastline detection based on sentinel-1 time series for ship- and flood-monitoring applicationsIEEE Geosci Remote Sens Lett202118101771177510.1109/LGRS.2020.3008011
– reference: Geetha PS, Sirisha J, Swathi K and Rao PRK. GUI information system based flood detection using Gaussian distance support vector machine. In: 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021;pp. 1639–45.
– reference: ZhaoMLingQLiFAn iterative feedback-based change detection algorithm for flood mapping in SAR imagesIEEE Geosci Remote Sens Lett201916223123510.1109/LGRS.2018.2871849
– reference: Samikwa E, Voigt T and Eriksson J. Flood prediction using IOT and artificial neural networks with edge computing. In: International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom), 2020;pp. 234–40.
– reference: Krishna Panama VS and Rao YS. Change detection based flood mapping of 2015 flood event of Chennai city using sentinel-1 SAR images. In: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019;pp. 9729–32.
– reference: RahnemoonfarMChowdhuryTSarkarAVarshneyDYariMMurphyRRFloodNet: a High-resolution aerial imagery dataset for post flood scene understandingIEEE Access20219896448965410.1109/ACCESS.2021.3090981
– reference: Agrawal T, Suraj and Meleet M. Classification of natural disaster using satellite and drone images with CNN using transfer learning. In: International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 2021;pp. 1–5.
– reference: LeeJHongJParkGKimHSLeeSSeoTContaminated facade identification using convolutional neural network and image processingIEEE Access2020818001018002110.1109/ACCESS.2020.3027839
– reference: Basnyat B, Singh N, Roy N and Gangopadhyay A. Design and deployment of a flash flood monitoring IOT: challenges and opportunities. In: IEEE International Conference on Smart Computing (SMARTCOMP), 2020;pp. 422–7.
– volume: 18
  start-page: 1771
  issue: 10
  year: 2021
  ident: 3336_CR8
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2020.3008011
– ident: 3336_CR9
  doi: 10.1109/IGARSS39084.2020.9324346
– volume: 8
  start-page: 180010
  year: 2020
  ident: 3336_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027839
– ident: 3336_CR2
  doi: 10.1109/IGARSS.2019.8900344
– ident: 3336_CR11
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00053
– ident: 3336_CR12
  doi: 10.1109/SMARTCOMP50058.2020.00088
– ident: 3336_CR6
  doi: 10.1109/IGARSS.2019.8897869
– ident: 3336_CR1
  doi: 10.1109/IGARSS.2019.8899282
– ident: 3336_CR4
  doi: 10.1109/IDAACS.2019.8924407
– ident: 3336_CR13
  doi: 10.1109/ICAC3N53548.2021.9725595
– volume: 15
  start-page: 17
  issue: 1
  year: 2021
  ident: 3336_CR14
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2020.2984797
– volume: 9
  start-page: 89644
  year: 2021
  ident: 3336_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090981
– volume: 16
  start-page: 231
  issue: 2
  year: 2019
  ident: 3336_CR3
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2018.2871849
– ident: 3336_CR5
  doi: 10.1109/ICSES52305.2021.9633803
– ident: 3336_CR10
  doi: 10.1109/CSICC52343.2021.9420594
SSID ssj0002504465
Score 2.2757103
Snippet Floods are one of the main threats to human life and the property of natural disasters, especially in highly populated urban areas. Fast and accurate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 992
SubjectTerms Accuracy
Advances in Computational Approaches for Image Processing
Algorithms
Automation
Back propagation
Banded structure
Binomial distribution
Classification
Cloud Applications and Network Security
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data collection
Data Structures and Information Theory
Datasets
Deep learning
Edge detection
Error analysis
Error detection
Floods
Image enhancement
Image resolution
Image segmentation
Impact analysis
Information Systems and Communication Service
Internet of Things
Literature reviews
Methods
Neural networks
Original Research
Pattern Recognition and Graphics
Performance evaluation
Pixels
Propagation
Remote sensing
Satellite imagery
Saturation (color)
Semantic segmentation
Semantics
Sensors
Software Engineering/Programming and Operating Systems
Spectrum analysis
Statistical methods
Technology assessment
Threat evaluation
Time series
Vision
Water
Wireless Networks
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86ffDFD1ScTsmDbxrcmvQjTzKcQ2GO4RSGLyVNLyK4dm7d_gH_cS9Zt6GgL76U0pYQcundL3e_uyPkPAINmjcM8yCpM2HSlEmDp9bQ8CS1YarQuOr6nbDbjQYD2SsdbpOSVrnQiU5Rp7m2PvIr3vAQuVsv5vXog9muUTa6WrbQWCcbtkqCbd3Q81-WPhZbnku4bpJohjwmpT8o82Zc9hyq4lAyNFKszjkPmPxum1aA80eM1Jme9s5_J71LtkvQSZvzXbJH1iDbJ5_NaZG7gq20D0NcYHfzOiyTkTKqspS6npmWTTR_lBv6CChcwC8z62Wg90NUSLSlCkUR_tK25cHTFhSO4ZVRx0ig3XwG77TTf3qgthgITqU7Z58fkOf27dPNHStbMjCNhl3i1QPfJs9LqPvKDyDQkUFIqQIOQSSU5djwxE9EqISvEO5oRHSAkAW4wvNvwg9JJcszOCJUhEEKQmluTEN4ECmQwpeRNohJcTRTJRcLYcSjeeWNeFlj2YkuRtHFTnSxrJLaQgJx-RdO4tXyV8nlQoar17-Pdvz3aCdky7PbxrFaaqRSjKdwSjb1rHibjM_cHvwCJEzh8w
  priority: 102
  providerName: ProQuest
Title Automatic Semantic Segmentation and Classification of Remote Sensing Image Data for Flood Detection Using Novel LSTM Neural Network
URI https://link.springer.com/article/10.1007/s42979-024-03336-9
https://www.proquest.com/docview/3121480052
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHbiwI8pS-cANLLWxs_jIVoGAqGoBIS6Rk4wREk0RDf0BfpyxmxSB4AAXK0ocy5qxPc_2mxmA_QgzzETbcA_TFpcmz7kytGsNjUhze00VGhdd_yqM4-j-XnUrp7BRzXavryTdSj11dqOVM1ScbApvCSECrmZhnsxdZBM29Pp305MVG5RLBn7lIfPzr1-t0Ce0_HYb6oxMZ_l_3VuBpQpUsqPJKFiFGSzWYLlO2MCq-bsO70dv5dDFaGV9HJBM3cPjoPI_KpgucubSZFoC0eTV0LAekj6Rahb2YIFdDGgNYqe61IwQL-tY6js7xdKRugrmSAgsHo7xmV31b66Zjf9BvYsnhPMNuO2c3Zyc8yoLA8_IlisqPfStv7zClq_9AIMsMoQidSAwiKS2tBqR-qkMtfQ1IZyMQBwSSkGhacubik2YK4YFbgGTYZCj1Jkwpi09jDQq6asoMwRDqTXTgINaK8nLJNhGMg2r7OSbkHwTJ99ENWC3VlxSTbxRItoebfDsYXcDDmtFfX7-vbXtv1XfgUXP6toRW3Zhrnx9wz1YyMbl0-i1CfPHZ3G314TZy5BT2fUfmm6QfgDHeN_o
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXCgLUhRZ8gBNY7MbOhw9VVXVZdbXbqGoXaW_BccYIiU1KNy3i3P_T39ixk3TVSnDrgUsUJZGVZJ5nxuM3MwDvEzRoxMDyAPM-l7YouLK0ao2tyAu3TRVbX11_GqdpMp-rozW46nJhHK2y04leUReVcTHyz2IQkOfuopi7p7-46xrldle7FhoNLCb45zct2ZY74yHJ90MQjL7M9g9421WAG7JNio4Bhi7_W2E_1GGEkUkseUU6EhglUjuaiMjDXMZahpostiGnBMnqotC0hMsFjfsAHkqRxG5eTWJ-E9Nx5cCk715JZi_gSoXzNk_HZ-uR6o8VJ6PI-0KIiKvbtnDl4N7Zk_WmbrTxv_2kZ_C0darZXjMLnsMali_gcu-8rnxBWnaCCwKQP_m-aJOtSqbLgvmeoI4t1VyqLDtGAi_Sk6WLorDxghQuG-paM3Lv2cjx_NkQa89gK5lnXLC0usCfbHoyO2Su2Am9Stqw61_C13v57lewXlYlbgKTcVSg1EZYO5ABJhqVDFViLPncNJrtwcdO-NlpU1kku6kh7aGSEVQyD5VM9WCrk3jWapllthJ3Dz51mFnd_vtor_892jt4fDA7nGbTcTp5A08CB1nP4NmC9frsHLfhkbmofyzP3nr8M_h231i6BowGOs0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CXHhjRgMyIEbVGxN-shxYkwgRoUYIG5V2joIiXVoFP4AfxwnbcdDcEBcqqpJo8hO4s_JZwdgP8QUU97WjotJyxE6yxypyWsNNE8yc0wVaJtdvx9EUXh3Jy8_RfFbtnt9JFnGNJgsTXlx9JTpo0ngG62igXTIvjgtzrnvyGmYFYZIb_z1we1kl8Uk6BK-V0XL_PzrV4v0ATO_nYxag9Nb-n9Xl2GxApusU46OFZjCfBWW6oscWDWv1-Ct81KMbO5WNsAhydq-3A-ruKScqTxj9vpMQywqP400u0LSM1LN3Gw4sLMhrU2sqwrFCAmznqHEsy4WluyVM0tOYNHoFR9Zf3B9wUxeEOpdVBLR1-Gmd3J9fOpUtzM4Kdl4SU8XPRNHL7HlKc9HPw01oUvlc_RDoQzdhideIgIlPEXIJyVwh4RekCtyhRO-ATP5KMdNYCLwMxQq5Vq3hYuhQik8Gaaa4Cm1phtwUGsofiqTcMSTdMtWvjHJN7byjWUDmrUS42pCPse87ZLjZzbBG3BYK-2j-PfWtv5WfQ_mL7u9uH8WnW_DgmvUbrkvTZgpxi-4A3Ppa_HwPN614_QdBDnoRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Semantic+Segmentation+and+Classification+of+Remote+Sensing+Image+Data+for+Flood+Detection+Using+Novel+LSTM+Neural+Network&rft.jtitle=SN+computer+science&rft.au=Sonavale%2C+Amruta&rft.au=Chakkaravarthy%2C+Midhun&rft.au=Srinivasa+Rao%2C+Surampudi&rft.au=Salleh%2C+Hishamuddin+Bin+M.&rft.date=2024-12-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=5&rft.issue=8&rft_id=info:doi/10.1007%2Fs42979-024-03336-9&rft.externalDocID=10_1007_s42979_024_03336_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon