An optimized multi-scale convolutional autoencoder for efficient abnormal event detection using rgb, depth and optical flow data
In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems&...
Saved in:
| Published in: | Multimedia tools and applications Vol. 84; no. 28; pp. 34401 - 34435 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems' ability to detect abnormal events, thereby contributing to enhanced security measures in public spaces. The proposed framework utilizes a Multiscale Convolutional Autoencoder (MSCAE) that processes inputs from RGB, depth, and optical flow video clips, enhancing the detection accuracy in complex scenes characterized by varying object scales, aspect ratios, and occlusions. To address the challenge of noise and preserve edges in video data, we implement a two-pass bilateral smooth filtering method, which is effective for noise-invariant, edge-preserving image smoothing. For object detection within these complex scenes, an enhanced Faster R-CNN model is employed. This model's performance is further refined through transfer learning on a dataset specifically composed of abnormal event videos. We also introduce significant improvements to the region proposal network (RPN) of the Faster R-CNN, particularly in non-maximum suppression (NMS) and anchor generation techniques, to better detect anomalies in diverse and complex environments. Furthermore, the MSCAE is integrated with Long Short-Term Memory (LSTM) neural networks to classify the detected anomalies, creating an end-to-end solution for video anomaly detection. Hyperparameter optimization for our deep learning models is performed using the Chameleon Swarm Algorithm, ensuring optimal model performance. Our framework was rigorously tested on the CUHK Avenue dataset, where it achieved a remarkable 99.5% accuracy, significantly outperforming existing methods and demonstrating the effectiveness of our approach. |
|---|---|
| AbstractList | In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems' ability to detect abnormal events, thereby contributing to enhanced security measures in public spaces. The proposed framework utilizes a Multiscale Convolutional Autoencoder (MSCAE) that processes inputs from RGB, depth, and optical flow video clips, enhancing the detection accuracy in complex scenes characterized by varying object scales, aspect ratios, and occlusions. To address the challenge of noise and preserve edges in video data, we implement a two-pass bilateral smooth filtering method, which is effective for noise-invariant, edge-preserving image smoothing. For object detection within these complex scenes, an enhanced Faster R-CNN model is employed. This model's performance is further refined through transfer learning on a dataset specifically composed of abnormal event videos. We also introduce significant improvements to the region proposal network (RPN) of the Faster R-CNN, particularly in non-maximum suppression (NMS) and anchor generation techniques, to better detect anomalies in diverse and complex environments. Furthermore, the MSCAE is integrated with Long Short-Term Memory (LSTM) neural networks to classify the detected anomalies, creating an end-to-end solution for video anomaly detection. Hyperparameter optimization for our deep learning models is performed using the Chameleon Swarm Algorithm, ensuring optimal model performance. Our framework was rigorously tested on the CUHK Avenue dataset, where it achieved a remarkable 99.5% accuracy, significantly outperforming existing methods and demonstrating the effectiveness of our approach. |
| Author | Alqahtani, Abdullah |
| Author_xml | – sequence: 1 givenname: Abdullah surname: Alqahtani fullname: Alqahtani, Abdullah email: aq.alqahtani@psau.edu.sa organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University |
| BookMark | eNp9kE9PAyEQxYnRxLb6BTyReHV12F12t8em8V_SxIueCQtD3WYLFdgaPfnRpa2JnjwQGOa9B_Mbk2PrLBJyweCaAdQ3gTEo8wxynuVQQZPxIzJivC6yus7Z8Z_zKRmHsAJgFc_LEfmaWeo2sVt3n6jpeuhjlwUle6TK2a3rh9g5K3sqh-jQKqfRU-M8RWM61aGNVLbW-XWS4HZXaoyodiY6hM4uqV-2V-lyE1-ptHr_VoqnpnfvVMsoz8iJkX3A8599Ql7ubp_nD9ni6f5xPltkijWcZ6ypwCgOGkrVlDpvgEFbYcPSkjz9pq5gatpW4RS1BtbCNDW5MiVgU9fTYkIuD7kb794GDFGs3ODTaEEUecGbgpcJ0YTkB5XyLgSPRmx8t5b-QzAQO9LiQFok0mJPWvBkKg6mkMR2if43-h_XN-BUhQM |
| Cites_doi | 10.1016/j.patrec.2018.08.031 10.1007/s11042-022-12656-y 10.1016/j.imavis.2021.104229 10.1016/j.neucom.2021.01.097 10.1016/j.patrec.2019.11.024 10.1109/TIFS.2019.2900907 10.1007/s10489-021-02356-9 10.3390/s21082811 10.1007/s11042-020-08786-w 10.11591/ijeecs.v24.i2.pp1063-1073 10.1109/TMM.2020.3037538 10.1016/j.micpro.2020.103303 10.1109/ACCESS.2019.2954540 10.36548/jscp.2021.2.001 10.3390/app12031021 10.1109/ACCESS.2021.3110798 10.1007/s11063-019-10113-w 10.1007/s11042-020-09406-3 10.1016/j.neucom.2020.10.044 10.1007/s00034-020-01522-7 10.3390/s22103862 10.1049/bme2.12064 10.1007/s11042-022-13494-8 10.1016/j.patrec.2021.11.001 10.1109/TNNLS.2021.3053563 10.1007/s11554-018-0840-6 10.1007/s13735-022-00227-8 10.1109/ACCESS.2020.2979869 10.1007/s11227-022-04410-w 10.3390/s21248501 10.1016/j.patcog.2021.108232 10.1049/ipr2.12532 10.1109/ACCESS.2021.3100678 10.1016/j.neucom.2020.07.058 10.1007/s11227-020-03391-y 10.1155/2021/6789956 10.1109/ACCESS.2020.2990355 10.1016/j.patcog.2020.107394 10.1007/s11704-018-7407-3 10.1007/s11760-020-01740-1 10.3390/s22124647 10.1016/j.patcog.2021.108336 10.1016/j.eswa.2021.114685 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-025-20608-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 34435 |
| ExternalDocumentID | 10_1007_s11042_025_20608_5 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c1855-1860fc50d04c84d28010b6e816e8a5eff7609fbbce9edd01b09e815cf40e87793 |
| IEDL.DBID | RSV |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 08:41:05 EST 2025 Sat Nov 29 07:34:23 EST 2025 Sun Aug 03 01:10:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Keywords | Deep learning Optimization algorithm Object detection Video anomaly detection Feature fusion Key frame extraction Abnormal event detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1855-1860fc50d04c84d28010b6e816e8a5eff7609fbbce9edd01b09e815cf40e87793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3235835457 |
| PQPubID | 54626 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_3235835457 crossref_primary_10_1007_s11042_025_20608_5 springer_journals_10_1007_s11042_025_20608_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20250800 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | T Li (20608_CR33) 2021; 439 D Jia (20608_CR40) 2022; 16 W Ullah (20608_CR24) 2021; 21 L Xia (20608_CR32) 2021; 77 Y Li (20608_CR36) 2019; 7 T Wang (20608_CR2) 2020; 14 SA Mahmood (20608_CR12) 2021; 24 L Xia (20608_CR6) 2022; 78 Y Hao (20608_CR27) 2022; 121 S Ren (20608_CR38) 2015; 39 J Yu (20608_CR8) 2021; 33 PY Ingle (20608_CR47) 2022; 22 K Pawar (20608_CR41) 2022; 11 20608_CR48 K Deepak (20608_CR23) 2021; 40 W Zhang (20608_CR29) 2021; 9 A Sikdar (20608_CR46) 2020; 415 Z Yang (20608_CR31) 2021; 9 F Zhou (20608_CR34) 2020; 52 RF Mansour (20608_CR22) 2021; 112 T Ganokratanaa (20608_CR28) 2022; 155 S Paris (20608_CR37) 2009; 4 T Liu (20608_CR43) 2021; 2021 Y Zhong (20608_CR14) 2022; 122 R Sharma (20608_CR17) 2021; 3 A Mehmood (20608_CR44) 2021; 21 T Ganokratanaa (20608_CR45) 2020; 8 P Khaire (20608_CR3) 2022; 81 Y Tang (20608_CR15) 2020; 129 C Direkoglu (20608_CR10) 2020; 8 X Zhang (20608_CR18) 2020; 105 Z Fang (20608_CR19) 2020; 23 JT Zhou (20608_CR42) 2019; 14 DR Patrikar (20608_CR4) 2022; 11 S Vosta (20608_CR16) 2022; 12 K Deepak (20608_CR20) 2021; 15 Y Cai (20608_CR30) 2021; 423 MK Sharma (20608_CR35) 2020; 79 W Ullah (20608_CR21) 2021; 80 Q Feng (20608_CR11) 2020; 130 B Wang (20608_CR26) 2022; 22 M Murugesan (20608_CR25) 2020; 79 P Matlani (20608_CR7) 2022; 81 W Hao (20608_CR13) 2020; 2020 BH Lohithashva (20608_CR9) 2020; 34 MS Braik (20608_CR39) 2021; 174 20608_CR5 A Balasundaram (20608_CR1) 2020; 17 |
| References_xml | – volume: 130 start-page: 242 year: 2020 ident: 20608_CR11 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.08.031 – volume: 81 start-page: 32857 issue: 23 year: 2022 ident: 20608_CR3 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12656-y – volume: 112 start-page: 104229 year: 2021 ident: 20608_CR22 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2021.104229 – volume: 439 start-page: 256 year: 2021 ident: 20608_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.097 – volume: 129 start-page: 123 year: 2020 ident: 20608_CR15 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.024 – volume: 39 start-page: 1137 issue: 6 year: 2015 ident: 20608_CR38 publication-title: Adv Neural Inf Process Syst – volume: 14 start-page: 2537 issue: 10 year: 2019 ident: 20608_CR42 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2019.2900907 – ident: 20608_CR5 doi: 10.1007/s10489-021-02356-9 – volume: 21 start-page: 2811 issue: 8 year: 2021 ident: 20608_CR24 publication-title: Sensors doi: 10.3390/s21082811 – volume: 79 start-page: 11237 year: 2020 ident: 20608_CR35 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08786-w – volume: 24 start-page: 1063 issue: 2 year: 2021 ident: 20608_CR12 publication-title: Indonesian J Electrical Eng Comp Sci doi: 10.11591/ijeecs.v24.i2.pp1063-1073 – volume: 23 start-page: 4106 year: 2020 ident: 20608_CR19 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2020.3037538 – volume: 79 start-page: 103303 year: 2020 ident: 20608_CR25 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2020.103303 – volume: 7 start-page: 172425 year: 2019 ident: 20608_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954540 – volume: 3 start-page: 55 issue: 02 year: 2021 ident: 20608_CR17 publication-title: J Soft Comp Paradigm (JSCP) doi: 10.36548/jscp.2021.2.001 – ident: 20608_CR48 doi: 10.3390/app12031021 – volume: 9 start-page: 124847 year: 2021 ident: 20608_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110798 – volume: 52 start-page: 961 year: 2020 ident: 20608_CR34 publication-title: Neural Process Lett doi: 10.1007/s11063-019-10113-w – volume: 34 start-page: 179 issue: 2 year: 2020 ident: 20608_CR9 publication-title: Rev d'IntelligenceArtif – volume: 80 start-page: 16979 year: 2021 ident: 20608_CR21 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09406-3 – volume: 423 start-page: 264 year: 2021 ident: 20608_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.044 – volume: 40 start-page: 1333 year: 2021 ident: 20608_CR23 publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-020-01522-7 – volume: 22 start-page: 3862 issue: 10 year: 2022 ident: 20608_CR47 publication-title: Sensors doi: 10.3390/s22103862 – volume: 11 start-page: 289 issue: 4 year: 2022 ident: 20608_CR41 publication-title: IET Biometrics doi: 10.1049/bme2.12064 – volume: 81 start-page: 42371 issue: 29 year: 2022 ident: 20608_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13494-8 – volume: 155 start-page: 143 year: 2022 ident: 20608_CR28 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2021.11.001 – volume: 33 start-page: 3572 issue: 8 year: 2021 ident: 20608_CR8 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3053563 – volume: 17 start-page: 915 issue: 4 year: 2020 ident: 20608_CR1 publication-title: J Real-Time Image Proc doi: 10.1007/s11554-018-0840-6 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 20608_CR37 publication-title: Foundations Trends® Comp Graphics Vision – volume: 11 start-page: 85 issue: 2 year: 2022 ident: 20608_CR4 publication-title: Int J Multimed Inf Retr doi: 10.1007/s13735-022-00227-8 – volume: 8 start-page: 50312 year: 2020 ident: 20608_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979869 – volume: 78 start-page: 13470 issue: 11 year: 2022 ident: 20608_CR6 publication-title: J Supercomput doi: 10.1007/s11227-022-04410-w – volume: 21 start-page: 8501 issue: 24 year: 2021 ident: 20608_CR44 publication-title: Sensors doi: 10.3390/s21248501 – volume: 121 start-page: 108232 year: 2022 ident: 20608_CR27 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108232 – volume: 16 start-page: 2973 issue: 11 year: 2022 ident: 20608_CR40 publication-title: IET Image Proc doi: 10.1049/ipr2.12532 – volume: 9 start-page: 107842 year: 2021 ident: 20608_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100678 – volume: 415 start-page: 317 year: 2020 ident: 20608_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.058 – volume: 77 start-page: 3223 year: 2021 ident: 20608_CR32 publication-title: J Supercomput doi: 10.1007/s11227-020-03391-y – volume: 2021 start-page: 1 year: 2021 ident: 20608_CR43 publication-title: Comput Intell Neurosci doi: 10.1155/2021/6789956 – volume: 8 start-page: 80408 year: 2020 ident: 20608_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990355 – volume: 2020 start-page: 8876056 issue: 1 year: 2020 ident: 20608_CR13 publication-title: Secur Commun Netw – volume: 105 start-page: 107394 year: 2020 ident: 20608_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107394 – volume: 14 start-page: 304 year: 2020 ident: 20608_CR2 publication-title: Front Comp Sci doi: 10.1007/s11704-018-7407-3 – volume: 15 start-page: 215 issue: 1 year: 2021 ident: 20608_CR20 publication-title: SIViP doi: 10.1007/s11760-020-01740-1 – volume: 22 start-page: 4647 issue: 12 year: 2022 ident: 20608_CR26 publication-title: Sensors doi: 10.3390/s22124647 – volume: 122 start-page: 108336 year: 2022 ident: 20608_CR14 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108336 – volume: 12 start-page: 1021 issue: 3 year: 2022 ident: 20608_CR16 publication-title: Appl Sci doi: 10.3390/app12031021 – volume: 174 start-page: 114685 year: 2021 ident: 20608_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114685 |
| SSID | ssj0016524 |
| Score | 2.3892713 |
| Snippet | In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 34401 |
| SubjectTerms | Accuracy Algorithms Anomalies Artificial neural networks Aspect ratio Automation Cameras Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Effectiveness Machine learning Multimedia Information Systems Object recognition Optical flow (image analysis) Optimization Public safety Public spaces Security Smart cities Special Purpose and Application-Based Systems Surveillance Surveillance systems Video data |
| Title | An optimized multi-scale convolutional autoencoder for efficient abnormal event detection using rgb, depth and optical flow data |
| URI | https://link.springer.com/article/10.1007/s11042-025-20608-5 https://www.proquest.com/docview/3235835457 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgMMBAoYAoFOSBjUZyEjtxxgpRMSCE-Ki6RbbjlEolqdoUJCZ-Omc3IYBggCFLnJwtn-17kt-7Q-hUeJJyIpnjauo5lEWRI0KhHBkoH-ApkdzWTxlchdfXfDiMbkpR2Lxiu1dXkvakrsVurpGSmPKrHgkId9gqWoNwx03Bhtu7wcfdQcA8Wspjfv7vawiqceW3q1AbYfrN_41tG22ViBL3lktgB63orIWaVbUGXG7eFtr8lHpwF731MpzDcfE0ftUJtrRCZw7-0tjw0Mv1CGbFoshNrssETAG-xdqmnIBIhYXMDN6dYJsDCie6sKyuDBsq_QjPRrILL6fFIxZZYvsC8zid5C_Y0FL30EP_4v780imrMTgKYjo4kwckVYwkhCpOEw9CG5GB5i48gkHvYUCiVEqlI50kxJUkgkamUko0D-EY2EeNLM_0AcJGTQs4KI08oWlEfanSkErlGyW3DETYRmeVg-LpMulGXKdXNlMdw1THdqpj1kadyodxuQHnsW8kwD7AQzDWrXxWN_9u7fBvnx-hDc-43VICO6hRzBb6GK2r52I8n53YhfkOzF7gGQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xScCBHbEU8IEbRHITZztWiKqIUiGWiltkO06pVJKqSUHixKczdhMKCA5wyCXLOPKMPU_ymzcAx9wWLKDCteqK2RZzw9DiPpeW8KSD8JSKwPRP6bb9Tid4eAivy6KwvGK7V0eSZqeeFrvVdSmJbr9qU48GljsL8wwzllbMv7ntfpwdeK7NyvKYn7_7moKmuPLbUajJMM3V__3bGqyUiJI0JiGwDjMq3YDVqlsDKRfvBix_kh7chLdGSjLcLp76ryomhlZo5egvRTQPvYxHNMvHRaa1LmM0hfiWKCM5gZmKcJFqvDsgRgOKxKowrK6UaCp9j4x64hRvDotHwtPYjIXmSTLIXoimpW7BffP87qxlld0YLIk5HZ0ZeDSRLo0pkwGLbUxtVHgqqOPFXRzd92iYCCFVqOKY1gUN8aErE0ZV4OM2sA1zaZaqHSC6mhZxUBLaXLGQOUImPhPS0ZXcwuP-LpxUDoqGE9GNaCqvrKc6wqmOzFRH7i7UKh9G5QLMI0eXADsID9HYaeWz6ePfre397fUjWGzdXbWj9kXnch-WbB0Chh5Yg7liNFYHsCCfi34-OjRB-g5WNuL9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQgGCgVEeXpgo1HdxHmNFVCBQBUSD7FFfqUgQVq1KUhM_HTObkIBwYAYssTJ2fKdfWf5--4ADrgrWESF77Q0cx3mx7HDQy4dEUgPw1MqIls_5fYi7Haju7v48hOL36LdyyvJCafBZGnK8uZApc0p8a1laCWmFKtLAxo5_izMMQOkN-f1q9uPe4TAd1lBlfn5v6_uaBpjfrsWtd6mU_3_OFdguYg0SXtiGqswo7MaVMsqDqRY1DVY-pSScA3e2hnp4zby9PCqFbFwQ2eEetTE4NMLO0WxfJz3TQ5MhaIw7iXapqLAkREuMhMHPxKbG4oonVu0V0YMxL5Hhj3RwJeD_J7wTNm-UDxJH_svxMBV1-Gmc3J9dOoUVRocib4elRwFNJU-VZTJiCkXXR4VgY5a-HAfew8DGqdCSB1rpWhL0BgbfZkyqqMQt4cNqGT9TG8CMSxbjI_S2OWaxcwTMg2ZkJ5heIuAh3U4LJWVDCbJOJJp2mUz1QlOdWKnOvHrsFPqMykW5ijxDDXYw7ARhTVK_U2bf5e29bfP92Hh8riTXJx1z7dh0TUWYFGDO1DJh2O9C_PyOX8YDfesvb4Dwlrr4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+multi-scale+convolutional+autoencoder+for+efficient+abnormal+event+detection+using+rgb%2C+depth+and+optical+flow+data&rft.jtitle=Multimedia+tools+and+applications&rft.au=Alqahtani%2C+Abdullah&rft.date=2025-08-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=28&rft.spage=34401&rft.epage=34435&rft_id=info:doi/10.1007%2Fs11042-025-20608-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_025_20608_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |