An optimized multi-scale convolutional autoencoder for efficient abnormal event detection using rgb, depth and optical flow data

In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems&...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 84; no. 28; pp. 34401 - 34435
Main Author: Alqahtani, Abdullah
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2025
Springer Nature B.V
Subjects:
ISSN:1573-7721, 1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems' ability to detect abnormal events, thereby contributing to enhanced security measures in public spaces. The proposed framework utilizes a Multiscale Convolutional Autoencoder (MSCAE) that processes inputs from RGB, depth, and optical flow video clips, enhancing the detection accuracy in complex scenes characterized by varying object scales, aspect ratios, and occlusions. To address the challenge of noise and preserve edges in video data, we implement a two-pass bilateral smooth filtering method, which is effective for noise-invariant, edge-preserving image smoothing. For object detection within these complex scenes, an enhanced Faster R-CNN model is employed. This model's performance is further refined through transfer learning on a dataset specifically composed of abnormal event videos. We also introduce significant improvements to the region proposal network (RPN) of the Faster R-CNN, particularly in non-maximum suppression (NMS) and anchor generation techniques, to better detect anomalies in diverse and complex environments. Furthermore, the MSCAE is integrated with Long Short-Term Memory (LSTM) neural networks to classify the detected anomalies, creating an end-to-end solution for video anomaly detection. Hyperparameter optimization for our deep learning models is performed using the Chameleon Swarm Algorithm, ensuring optimal model performance. Our framework was rigorously tested on the CUHK Avenue dataset, where it achieved a remarkable 99.5% accuracy, significantly outperforming existing methods and demonstrating the effectiveness of our approach.
AbstractList In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications. This research introduces a robust and efficient solution for video anomaly detection, offering substantial improvements in surveillance systems' ability to detect abnormal events, thereby contributing to enhanced security measures in public spaces. The proposed framework utilizes a Multiscale Convolutional Autoencoder (MSCAE) that processes inputs from RGB, depth, and optical flow video clips, enhancing the detection accuracy in complex scenes characterized by varying object scales, aspect ratios, and occlusions. To address the challenge of noise and preserve edges in video data, we implement a two-pass bilateral smooth filtering method, which is effective for noise-invariant, edge-preserving image smoothing. For object detection within these complex scenes, an enhanced Faster R-CNN model is employed. This model's performance is further refined through transfer learning on a dataset specifically composed of abnormal event videos. We also introduce significant improvements to the region proposal network (RPN) of the Faster R-CNN, particularly in non-maximum suppression (NMS) and anchor generation techniques, to better detect anomalies in diverse and complex environments. Furthermore, the MSCAE is integrated with Long Short-Term Memory (LSTM) neural networks to classify the detected anomalies, creating an end-to-end solution for video anomaly detection. Hyperparameter optimization for our deep learning models is performed using the Chameleon Swarm Algorithm, ensuring optimal model performance. Our framework was rigorously tested on the CUHK Avenue dataset, where it achieved a remarkable 99.5% accuracy, significantly outperforming existing methods and demonstrating the effectiveness of our approach.
Author Alqahtani, Abdullah
Author_xml – sequence: 1
  givenname: Abdullah
  surname: Alqahtani
  fullname: Alqahtani, Abdullah
  email: aq.alqahtani@psau.edu.sa
  organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University
BookMark eNp9kE9PAyEQxYnRxLb6BTyReHV12F12t8em8V_SxIueCQtD3WYLFdgaPfnRpa2JnjwQGOa9B_Mbk2PrLBJyweCaAdQ3gTEo8wxynuVQQZPxIzJivC6yus7Z8Z_zKRmHsAJgFc_LEfmaWeo2sVt3n6jpeuhjlwUle6TK2a3rh9g5K3sqh-jQKqfRU-M8RWM61aGNVLbW-XWS4HZXaoyodiY6hM4uqV-2V-lyE1-ptHr_VoqnpnfvVMsoz8iJkX3A8599Ql7ubp_nD9ni6f5xPltkijWcZ6ypwCgOGkrVlDpvgEFbYcPSkjz9pq5gatpW4RS1BtbCNDW5MiVgU9fTYkIuD7kb794GDFGs3ODTaEEUecGbgpcJ0YTkB5XyLgSPRmx8t5b-QzAQO9LiQFok0mJPWvBkKg6mkMR2if43-h_XN-BUhQM
Cites_doi 10.1016/j.patrec.2018.08.031
10.1007/s11042-022-12656-y
10.1016/j.imavis.2021.104229
10.1016/j.neucom.2021.01.097
10.1016/j.patrec.2019.11.024
10.1109/TIFS.2019.2900907
10.1007/s10489-021-02356-9
10.3390/s21082811
10.1007/s11042-020-08786-w
10.11591/ijeecs.v24.i2.pp1063-1073
10.1109/TMM.2020.3037538
10.1016/j.micpro.2020.103303
10.1109/ACCESS.2019.2954540
10.36548/jscp.2021.2.001
10.3390/app12031021
10.1109/ACCESS.2021.3110798
10.1007/s11063-019-10113-w
10.1007/s11042-020-09406-3
10.1016/j.neucom.2020.10.044
10.1007/s00034-020-01522-7
10.3390/s22103862
10.1049/bme2.12064
10.1007/s11042-022-13494-8
10.1016/j.patrec.2021.11.001
10.1109/TNNLS.2021.3053563
10.1007/s11554-018-0840-6
10.1007/s13735-022-00227-8
10.1109/ACCESS.2020.2979869
10.1007/s11227-022-04410-w
10.3390/s21248501
10.1016/j.patcog.2021.108232
10.1049/ipr2.12532
10.1109/ACCESS.2021.3100678
10.1016/j.neucom.2020.07.058
10.1007/s11227-020-03391-y
10.1155/2021/6789956
10.1109/ACCESS.2020.2990355
10.1016/j.patcog.2020.107394
10.1007/s11704-018-7407-3
10.1007/s11760-020-01740-1
10.3390/s22124647
10.1016/j.patcog.2021.108336
10.1016/j.eswa.2021.114685
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-025-20608-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 34435
ExternalDocumentID 10_1007_s11042_025_20608_5
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1855-1860fc50d04c84d28010b6e816e8a5eff7609fbbce9edd01b09e815cf40e87793
IEDL.DBID RSV
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 08:41:05 EST 2025
Sat Nov 29 07:34:23 EST 2025
Sun Aug 03 01:10:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords Deep learning
Optimization algorithm
Object detection
Video anomaly detection
Feature fusion
Key frame extraction
Abnormal event detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1855-1860fc50d04c84d28010b6e816e8a5eff7609fbbce9edd01b09e815cf40e87793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235835457
PQPubID 54626
PageCount 35
ParticipantIDs proquest_journals_3235835457
crossref_primary_10_1007_s11042_025_20608_5
springer_journals_10_1007_s11042_025_20608_5
PublicationCentury 2000
PublicationDate 20250800
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References T Li (20608_CR33) 2021; 439
D Jia (20608_CR40) 2022; 16
W Ullah (20608_CR24) 2021; 21
L Xia (20608_CR32) 2021; 77
Y Li (20608_CR36) 2019; 7
T Wang (20608_CR2) 2020; 14
SA Mahmood (20608_CR12) 2021; 24
L Xia (20608_CR6) 2022; 78
Y Hao (20608_CR27) 2022; 121
S Ren (20608_CR38) 2015; 39
J Yu (20608_CR8) 2021; 33
PY Ingle (20608_CR47) 2022; 22
K Pawar (20608_CR41) 2022; 11
20608_CR48
K Deepak (20608_CR23) 2021; 40
W Zhang (20608_CR29) 2021; 9
A Sikdar (20608_CR46) 2020; 415
Z Yang (20608_CR31) 2021; 9
F Zhou (20608_CR34) 2020; 52
RF Mansour (20608_CR22) 2021; 112
T Ganokratanaa (20608_CR28) 2022; 155
S Paris (20608_CR37) 2009; 4
T Liu (20608_CR43) 2021; 2021
Y Zhong (20608_CR14) 2022; 122
R Sharma (20608_CR17) 2021; 3
A Mehmood (20608_CR44) 2021; 21
T Ganokratanaa (20608_CR45) 2020; 8
P Khaire (20608_CR3) 2022; 81
Y Tang (20608_CR15) 2020; 129
C Direkoglu (20608_CR10) 2020; 8
X Zhang (20608_CR18) 2020; 105
Z Fang (20608_CR19) 2020; 23
JT Zhou (20608_CR42) 2019; 14
DR Patrikar (20608_CR4) 2022; 11
S Vosta (20608_CR16) 2022; 12
K Deepak (20608_CR20) 2021; 15
Y Cai (20608_CR30) 2021; 423
MK Sharma (20608_CR35) 2020; 79
W Ullah (20608_CR21) 2021; 80
Q Feng (20608_CR11) 2020; 130
B Wang (20608_CR26) 2022; 22
M Murugesan (20608_CR25) 2020; 79
P Matlani (20608_CR7) 2022; 81
W Hao (20608_CR13) 2020; 2020
BH Lohithashva (20608_CR9) 2020; 34
MS Braik (20608_CR39) 2021; 174
20608_CR5
A Balasundaram (20608_CR1) 2020; 17
References_xml – volume: 130
  start-page: 242
  year: 2020
  ident: 20608_CR11
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.08.031
– volume: 81
  start-page: 32857
  issue: 23
  year: 2022
  ident: 20608_CR3
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12656-y
– volume: 112
  start-page: 104229
  year: 2021
  ident: 20608_CR22
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2021.104229
– volume: 439
  start-page: 256
  year: 2021
  ident: 20608_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.097
– volume: 129
  start-page: 123
  year: 2020
  ident: 20608_CR15
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.024
– volume: 39
  start-page: 1137
  issue: 6
  year: 2015
  ident: 20608_CR38
  publication-title: Adv Neural Inf Process Syst
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  ident: 20608_CR42
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2019.2900907
– ident: 20608_CR5
  doi: 10.1007/s10489-021-02356-9
– volume: 21
  start-page: 2811
  issue: 8
  year: 2021
  ident: 20608_CR24
  publication-title: Sensors
  doi: 10.3390/s21082811
– volume: 79
  start-page: 11237
  year: 2020
  ident: 20608_CR35
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08786-w
– volume: 24
  start-page: 1063
  issue: 2
  year: 2021
  ident: 20608_CR12
  publication-title: Indonesian J Electrical Eng Comp Sci
  doi: 10.11591/ijeecs.v24.i2.pp1063-1073
– volume: 23
  start-page: 4106
  year: 2020
  ident: 20608_CR19
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.3037538
– volume: 79
  start-page: 103303
  year: 2020
  ident: 20608_CR25
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2020.103303
– volume: 7
  start-page: 172425
  year: 2019
  ident: 20608_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954540
– volume: 3
  start-page: 55
  issue: 02
  year: 2021
  ident: 20608_CR17
  publication-title: J Soft Comp Paradigm (JSCP)
  doi: 10.36548/jscp.2021.2.001
– ident: 20608_CR48
  doi: 10.3390/app12031021
– volume: 9
  start-page: 124847
  year: 2021
  ident: 20608_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110798
– volume: 52
  start-page: 961
  year: 2020
  ident: 20608_CR34
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-10113-w
– volume: 34
  start-page: 179
  issue: 2
  year: 2020
  ident: 20608_CR9
  publication-title: Rev d'IntelligenceArtif
– volume: 80
  start-page: 16979
  year: 2021
  ident: 20608_CR21
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09406-3
– volume: 423
  start-page: 264
  year: 2021
  ident: 20608_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.044
– volume: 40
  start-page: 1333
  year: 2021
  ident: 20608_CR23
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-020-01522-7
– volume: 22
  start-page: 3862
  issue: 10
  year: 2022
  ident: 20608_CR47
  publication-title: Sensors
  doi: 10.3390/s22103862
– volume: 11
  start-page: 289
  issue: 4
  year: 2022
  ident: 20608_CR41
  publication-title: IET Biometrics
  doi: 10.1049/bme2.12064
– volume: 81
  start-page: 42371
  issue: 29
  year: 2022
  ident: 20608_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13494-8
– volume: 155
  start-page: 143
  year: 2022
  ident: 20608_CR28
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2021.11.001
– volume: 33
  start-page: 3572
  issue: 8
  year: 2021
  ident: 20608_CR8
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3053563
– volume: 17
  start-page: 915
  issue: 4
  year: 2020
  ident: 20608_CR1
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-018-0840-6
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 20608_CR37
  publication-title: Foundations Trends® Comp Graphics Vision
– volume: 11
  start-page: 85
  issue: 2
  year: 2022
  ident: 20608_CR4
  publication-title: Int J Multimed Inf Retr
  doi: 10.1007/s13735-022-00227-8
– volume: 8
  start-page: 50312
  year: 2020
  ident: 20608_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979869
– volume: 78
  start-page: 13470
  issue: 11
  year: 2022
  ident: 20608_CR6
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04410-w
– volume: 21
  start-page: 8501
  issue: 24
  year: 2021
  ident: 20608_CR44
  publication-title: Sensors
  doi: 10.3390/s21248501
– volume: 121
  start-page: 108232
  year: 2022
  ident: 20608_CR27
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108232
– volume: 16
  start-page: 2973
  issue: 11
  year: 2022
  ident: 20608_CR40
  publication-title: IET Image Proc
  doi: 10.1049/ipr2.12532
– volume: 9
  start-page: 107842
  year: 2021
  ident: 20608_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100678
– volume: 415
  start-page: 317
  year: 2020
  ident: 20608_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.058
– volume: 77
  start-page: 3223
  year: 2021
  ident: 20608_CR32
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03391-y
– volume: 2021
  start-page: 1
  year: 2021
  ident: 20608_CR43
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/6789956
– volume: 8
  start-page: 80408
  year: 2020
  ident: 20608_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990355
– volume: 2020
  start-page: 8876056
  issue: 1
  year: 2020
  ident: 20608_CR13
  publication-title: Secur Commun Netw
– volume: 105
  start-page: 107394
  year: 2020
  ident: 20608_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107394
– volume: 14
  start-page: 304
  year: 2020
  ident: 20608_CR2
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-018-7407-3
– volume: 15
  start-page: 215
  issue: 1
  year: 2021
  ident: 20608_CR20
  publication-title: SIViP
  doi: 10.1007/s11760-020-01740-1
– volume: 22
  start-page: 4647
  issue: 12
  year: 2022
  ident: 20608_CR26
  publication-title: Sensors
  doi: 10.3390/s22124647
– volume: 122
  start-page: 108336
  year: 2022
  ident: 20608_CR14
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108336
– volume: 12
  start-page: 1021
  issue: 3
  year: 2022
  ident: 20608_CR16
  publication-title: Appl Sci
  doi: 10.3390/app12031021
– volume: 174
  start-page: 114685
  year: 2021
  ident: 20608_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114685
SSID ssj0016524
Score 2.3892713
Snippet In this study, we propose a novel framework for detecting abnormal events in surveillance videos, a critical yet challenging task in security applications....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 34401
SubjectTerms Accuracy
Algorithms
Anomalies
Artificial neural networks
Aspect ratio
Automation
Cameras
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Effectiveness
Machine learning
Multimedia Information Systems
Object recognition
Optical flow (image analysis)
Optimization
Public safety
Public spaces
Security
Smart cities
Special Purpose and Application-Based Systems
Surveillance
Surveillance systems
Video data
Title An optimized multi-scale convolutional autoencoder for efficient abnormal event detection using rgb, depth and optical flow data
URI https://link.springer.com/article/10.1007/s11042-025-20608-5
https://www.proquest.com/docview/3235835457
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLZ4DTDwOEAcHCgDGxcpbZq0HRECMSHES2xV8zqQoIfuCkhM_HSc0HKAYIChS9M6ke3YlvzZBti1Oo9spi3lThqaSFnSMneccqNzF7nSCObCsIn05CS7vs5Pm6KwcYt2b1OSwVJPit0iX0rix6_GTLKMimmYRXeX-YENZ-dXH7kDKeKkKY_5-b-vLmgSV35LhQYPc7T0v7Mtw2ITUZL9dxVYgSlbdWCpndZAmsvbgYVPrQdX4XW_IkM0F_e3L9aQACukY5SXJR6H3ugjki0f66HvdWmQFMa3xIaWE-ipSKkqH-_ekdADihhbB1RXRTyUfkBGA9XHlw_1DSkrE_ZC8sTdDZ-Jh6WuweXR4cXBMW2mMVCNPl3QKJPMacEMS3SWmBhdG1PSZhE-pcDdU8lyp5S2uTWGRYrluCi0S5jNUjQD6zBTDSu7AYRpIxKjlOKcJ1xZ5bOLJuaalYmVadyFvVZAxcN7041i0l7Zs7pAVheB1YXoQq-VYdFcwHHBfQkwx_Aw7UK_ldlk-Xdqm3_7fAvmYy_2AAnswUw9erTbMKef6tvxaCco5hs8-eHc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VFgl6aCFQERpgD9zoSmvvw_axQq2CSCMEBeVmeV8lUupUiQtST_3pnd3YTYvgQA--eO3Z1c7szkjzzTcA750pEpcbR7lXlgqlKloVnlNuTeETX1nJfGw2kY3H-WRSfGmLwpYd2r1LScabel3sloRSktB-NWWK5VQ-gi2BHisw5n_99uM2d6BkKtrymL__d98FrePKP1Kh0cMc7z5sbc9gp40oyeHKBJ7Dhqt7sNt1ayDt4e3B9h3qwRdwfViTOV4X59MrZ0mEFdIl6suRgENv7RHFVpfNPHBdWhSF8S1xkXICPRWpdB3i3RmJHFDEuiaiumoSoPRnZHGmD_DlRfOTVLWNc6F44mfz3yTAUl_C9-Oj049D2nZjoAZ9uqRJrpg3klkmTC5siq6NaeXyBJ9K4uyZYoXX2rjCWcsSzQoclMYL5vIMr4E92KzntXsFhBkrhdVac84F106H7KJNuWGVcCpL-_ChU1B5sSLdKNf0ymGrS9zqMm51Kfsw6HRYtgdwWfJQAswxPMz6cNDpbD38b2mv_-_zd_BkeHoyKkefxp_34WkaTCDCAwew2Swu3Rt4bH410-XibTTSG9vm5MA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFqFyaCBQNTSFPXAjq6y9D9vHihK1AkWRWlBulvcVIqVOlDggcepP7-7GJimCQ8XBFz9mVzuzO2PNN98AvDcqi0yqDKZWaMyEKHCRWYqpVpmNbKE5saHZRDIcpuNxNtqp4g9o9yYlualp8CxNZdVfaNvfFr5FvqzEt2KNiSAp5k_ggHkgvf9fv_72O48geMzqUpm_f_fQHW1jzD_SosHbDFr_P88XcFRHmuh8YxovYc-UbWg1XRxQvanb8HyHkvAV3J2XaO6OkdvpL6NRgBvildOjQR6fXtupE1usq7nnwNROlIt7kQlUFG5mqJClj4NnKHBDIW2qgPYqkYfYT9ByInvu5qL6jopSh7GceGRn85_Iw1Vfw9fBp5uPl7ju0oCV8_UcR6kgVnGiCVMp07FzeUQKk0buKrgbPREks1IqkxmtSSRJ5h5yZRkxaeKOh2PYL-elOQFElOZMSykppYxKI33WUcdUkYIZkcQd-NAoK19syDjyLe2yX-rcLXUeljrnHeg2-szrjbnKqS8Npi5sTDrQa_S3ffxvaW8e9_o7eDa6GORfroafT-Ew9hYQUINd2K-Wa3MGT9WParpavg32eg9m9u2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+multi-scale+convolutional+autoencoder+for+efficient+abnormal+event+detection+using+rgb%2C+depth+and+optical+flow+data&rft.jtitle=Multimedia+tools+and+applications&rft.au=Alqahtani%2C+Abdullah&rft.date=2025-08-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=28&rft.spage=34401&rft.epage=34435&rft_id=info:doi/10.1007%2Fs11042-025-20608-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_025_20608_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon