Aggressive and robust low-level control and trajectory tracking for quadrotors with deep reinforcement learning

Executing accurate trajectory tracking tasks using a high-performance low-level controller is crucial for quadrotors to be applied in various scenarios, especially those involving uncertain disturbances. However, due to the uncertainties in disturbed environments, developing effective low-level cont...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 37; no. 3; pp. 1223 - 1240
Main Authors: Chen, Shiyu, Li, Yanjie, Lou, Yunjiang, Lin, Ke
Format: Journal Article
Language:English
Published: London Springer London 01.01.2025
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Executing accurate trajectory tracking tasks using a high-performance low-level controller is crucial for quadrotors to be applied in various scenarios, especially those involving uncertain disturbances. However, due to the uncertainties in disturbed environments, developing effective low-level controllers with traditional model-based control schemes is challenging. This paper presents an aggressive and robust reinforcement learning (RL)-based low-level control policy for quadrotors. The policy maps the observed quadrotor state directly to motor thrust commands, without requiring the quadrotor dynamics. Additionally, a trajectory generation pipeline is developed to improve the accuracy of trajectory tracking tasks based on differential flatness. With the learned low-level control policy, extensive simulations and real-world experiments are implemented to validate the performance of the policy. The results indicate that our RL-based low-level control policy outperforms traditional proportional–integral–derivative (PID) control methods and related learning-based policies in terms of accuracy and robustness, particularly in environments with uncertain disturbances. Furthermore, the proposed RL-based control policy exhibits an aggressive response in trajectory tracking, even when the speed of the desired trajectory is increased to 6 m/s. Moreover, the learned policy demonstrates strong vibration suppression capabilities and enables the quadrotor to recover to a hovering state from random initial conditions with shorter response time.
AbstractList Executing accurate trajectory tracking tasks using a high-performance low-level controller is crucial for quadrotors to be applied in various scenarios, especially those involving uncertain disturbances. However, due to the uncertainties in disturbed environments, developing effective low-level controllers with traditional model-based control schemes is challenging. This paper presents an aggressive and robust reinforcement learning (RL)-based low-level control policy for quadrotors. The policy maps the observed quadrotor state directly to motor thrust commands, without requiring the quadrotor dynamics. Additionally, a trajectory generation pipeline is developed to improve the accuracy of trajectory tracking tasks based on differential flatness. With the learned low-level control policy, extensive simulations and real-world experiments are implemented to validate the performance of the policy. The results indicate that our RL-based low-level control policy outperforms traditional proportional–integral–derivative (PID) control methods and related learning-based policies in terms of accuracy and robustness, particularly in environments with uncertain disturbances. Furthermore, the proposed RL-based control policy exhibits an aggressive response in trajectory tracking, even when the speed of the desired trajectory is increased to 6 m/s. Moreover, the learned policy demonstrates strong vibration suppression capabilities and enables the quadrotor to recover to a hovering state from random initial conditions with shorter response time.
Executing accurate trajectory tracking tasks using a high-performance low-level controller is crucial for quadrotors to be applied in various scenarios, especially those involving uncertain disturbances. However, due to the uncertainties in disturbed environments, developing effective low-level controllers with traditional model-based control schemes is challenging. This paper presents an aggressive and robust reinforcement learning (RL)-based low-level control policy for quadrotors. The policy maps the observed quadrotor state directly to motor thrust commands, without requiring the quadrotor dynamics. Additionally, a trajectory generation pipeline is developed to improve the accuracy of trajectory tracking tasks based on differential flatness. With the learned low-level control policy, extensive simulations and real-world experiments are implemented to validate the performance of the policy. The results indicate that our RL-based low-level control policy outperforms traditional proportional–integral–derivative (PID) control methods and related learning-based policies in terms of accuracy and robustness, particularly in environments with uncertain disturbances. Furthermore, the proposed RL-based control policy exhibits an aggressive response in trajectory tracking, even when the speed of the desired trajectory is increased to 6 m/s. Moreover, the learned policy demonstrates strong vibration suppression capabilities and enables the quadrotor to recover to a hovering state from random initial conditions with shorter response time.
Author Lou, Yunjiang
Li, Yanjie
Lin, Ke
Chen, Shiyu
Author_xml – sequence: 1
  givenname: Shiyu
  surname: Chen
  fullname: Chen, Shiyu
  organization: Department of Control Science and Engineering, Harbin Institute of Technology Shenzhen, Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics
– sequence: 2
  givenname: Yanjie
  surname: Li
  fullname: Li, Yanjie
  email: autolyj@hit.edu.cn
  organization: Department of Control Science and Engineering, Harbin Institute of Technology Shenzhen, Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics
– sequence: 3
  givenname: Yunjiang
  surname: Lou
  fullname: Lou, Yunjiang
  organization: Department of Control Science and Engineering, Harbin Institute of Technology Shenzhen, Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics
– sequence: 4
  givenname: Ke
  surname: Lin
  fullname: Lin, Ke
  organization: Department of Control Science and Engineering, Harbin Institute of Technology Shenzhen, Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics
BookMark eNp9kEtLAzEQx4NUsK1-AU8Bz6uT1-72WIovELzoOewms3XrNmmTbUu_vWlX8OZphvk_Bn4TMnLeISG3DO4ZQPEQARRnGXCZMcgLlckLMmZSiEyAKkdkDDOZ5FyKKzKJcQUAMi_VmPj5chkwxnaPtHKWBl_vYk87f8g63GNHjXd98N1Z7EO1QtP7cDyt5rt1S9r4QLe7ygaf7pEe2v6LWsQNDdi6JBpco0uFWAWX_Nfksqm6iDe_c0o-nx4_Fi_Z2_vz62L-lhlWKplxVRVoZK3qYlbkADk3BasZWtEoVs-EkRYMR8NrxBqF5Y1lZVXWtsECLGvElNwNvZvgtzuMvV75XXDppRZMzZQCxlVy8cFlgo8xYKM3oV1X4agZ6BNYPYDVCaw-g9UyhcQQisnslhj-qv9J_QDpVoBE
Cites_doi 10.1109/TSMC.2018.2884725
10.1109/IJCNN.1992.227257
10.1109/LRA.2021.3131690
10.48550/arXiv.2010.02293
10.48550/arXiv.1509.02971
10.1007/978-3-319-90893-9_43
10.1109/TSMC.2022.3222857
10.1016/j.conengprac.2019.104222
10.1109/SECon.2012.6196930
10.1109/LARS/SBR/WRE.2018.00094
10.48550/arXiv.1709.03339
10.1109/TIV.2022.3229723
10.1109/TASE.2017.2651109
10.3182/20110828-6-IT-1002.02453
10.1177/0278364913495721
10.3303/CET1544052
10.1109/RTCSA.2019.8864571
10.48550/arXiv.1711.02508
10.1109/TCST.2020.3001117
10.24963/ijcai.2018/685
10.1109/ICRA.2011.5980409
10.1016/j.inpa.2022.02.002
10.1145/3301273
10.5555/3104322.3104425
10.3390/rs9080824
10.23919/ECC.2013.6669644
10.1109/LRA.2017.2720851
10.1109/ICRA48891.2023.10160851
10.1109/IROS55552.2023.10341871
10.1109/LRA.2017.2776353
10.1007/s10846-021-01527-7
10.48550/arXiv.1707.06347
10.1002/9780470316887
10.1109/TNSE.2023.3325002
10.1007/s10514-012-9280-5
10.48550/arXiv.1506.02438
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10675-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1240
ExternalDocumentID 10_1007_s00521_024_10675_4
GrantInformation_xml – fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20220818102415033; JSGG20201103093802006; KJZD20230923114222045
  funderid: http://dx.doi.org/10.13039/501100017607
– fundername: National Natural Science Foundation of China
  grantid: 61977019
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c1854-25a7ec4b5b79760062c71b1ed3f51b93c4d0c2ec2beebe3d2fd18a8bdfe70d1f3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 08:57:39 EST 2025
Sat Nov 29 04:30:44 EST 2025
Fri Feb 21 02:37:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Robustness
Trajectory tracking
Low-level control
Reinforcement learning
Quadrotor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1854-25a7ec4b5b79760062c71b1ed3f51b93c4d0c2ec2beebe3d2fd18a8bdfe70d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3159550125
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_3159550125
crossref_primary_10_1007_s00521_024_10675_4
springer_journals_10_1007_s00521_024_10675_4
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References J Kober (10675_CR22) 2013; 32
K Choutri (10675_CR3) 2020; 10
CH Pi (10675_CR35) 2020; 95
A Hafeez (10675_CR8) 2023; 10
RS Sutton (10675_CR19) 2018
JP Škrinjar (10675_CR6) 2019; 42
H Shan (10675_CR13) 2024; 11
10675_CR30
10675_CR31
M Faessler (10675_CR42) 2018; 3
W Koch (10675_CR25) 2019; 3
10675_CR14
10675_CR36
10675_CR37
10675_CR38
10675_CR39
10675_CR32
M Idrissi (10675_CR1) 2022; 104
10675_CR11
J Hwangbo (10675_CR29) 2017; 2
10675_CR34
F Santoso (10675_CR18) 2018; 15
AL Salih (10675_CR9) 2010; 5
10675_CR2
Y Zhang (10675_CR4) 2017; 9
E Tal (10675_CR16) 2021; 29
10675_CR5
PEI Pounds (10675_CR10) 2012; 33
10675_CR40
W Yang (10675_CR12) 2023; 53
10675_CR41
10675_CR20
D Hanover (10675_CR17) 2022; 7
S Chen (10675_CR23) 2023; 8
10675_CR26
10675_CR27
Y Wang (10675_CR33) 2020; 50
DK Giles (10675_CR7) 2015; 44
GV Raffo (10675_CR15) 2011
10675_CR28
10675_CR21
10675_CR43
10675_CR44
10675_CR45
10675_CR24
References_xml – volume: 50
  start-page: 3713
  issue: 10
  year: 2020
  ident: 10675_CR33
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2018.2884725
– ident: 10675_CR38
  doi: 10.1109/IJCNN.1992.227257
– ident: 10675_CR31
– volume: 7
  start-page: 690
  issue: 2
  year: 2022
  ident: 10675_CR17
  publication-title: IEEE Robot Automat Lett
  doi: 10.1109/LRA.2021.3131690
– ident: 10675_CR32
  doi: 10.48550/arXiv.2010.02293
– ident: 10675_CR26
  doi: 10.48550/arXiv.1509.02971
– ident: 10675_CR27
– volume: 42
  start-page: 359
  year: 2019
  ident: 10675_CR6
  publication-title: Lecture Note Network and Syst
  doi: 10.1007/978-3-319-90893-9_43
– volume: 53
  start-page: 3152
  issue: 5
  year: 2023
  ident: 10675_CR12
  publication-title: IEEE Trans Syst Man, Cyber: Syst
  doi: 10.1109/TSMC.2022.3222857
– volume: 95
  year: 2020
  ident: 10675_CR35
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2019.104222
– ident: 10675_CR2
  doi: 10.1109/SECon.2012.6196930
– ident: 10675_CR30
  doi: 10.1109/LARS/SBR/WRE.2018.00094
– ident: 10675_CR21
  doi: 10.48550/arXiv.1709.03339
– volume: 5
  start-page: 3660
  issue: 23
  year: 2010
  ident: 10675_CR9
  publication-title: Sci. Res Essays
– ident: 10675_CR44
– volume: 8
  start-page: 2271
  issue: 3
  year: 2023
  ident: 10675_CR23
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2022.3229723
– volume: 15
  start-page: 613
  issue: 2
  year: 2018
  ident: 10675_CR18
  publication-title: IEEE Trans Automat Sci Eng
  doi: 10.1109/TASE.2017.2651109
– year: 2011
  ident: 10675_CR15
  publication-title: IFAC
  doi: 10.3182/20110828-6-IT-1002.02453
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: 10675_CR19
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 10675_CR22
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913495721
– ident: 10675_CR40
– volume: 44
  start-page: 307
  year: 2015
  ident: 10675_CR7
  publication-title: Chem Eng Trans
  doi: 10.3303/CET1544052
– ident: 10675_CR34
  doi: 10.1109/RTCSA.2019.8864571
– ident: 10675_CR45
  doi: 10.48550/arXiv.1711.02508
– volume: 29
  start-page: 1203
  issue: 3
  year: 2021
  ident: 10675_CR16
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2020.3001117
– ident: 10675_CR20
  doi: 10.24963/ijcai.2018/685
– ident: 10675_CR41
  doi: 10.1109/ICRA.2011.5980409
– volume: 10
  start-page: 192
  issue: 2
  year: 2023
  ident: 10675_CR8
  publication-title: Inform Process Agri
  doi: 10.1016/j.inpa.2022.02.002
– volume: 3
  start-page: 1
  issue: 2
  year: 2019
  ident: 10675_CR25
  publication-title: ACM Trans Cyber-Physical Syst
  doi: 10.1145/3301273
– ident: 10675_CR37
  doi: 10.5555/3104322.3104425
– volume: 9
  start-page: 824
  issue: 8
  year: 2017
  ident: 10675_CR4
  publication-title: Remote Sens
  doi: 10.3390/rs9080824
– ident: 10675_CR14
  doi: 10.23919/ECC.2013.6669644
– ident: 10675_CR11
– volume: 2
  start-page: 2096
  issue: 4
  year: 2017
  ident: 10675_CR29
  publication-title: IEEE Robot Automat Lett
  doi: 10.1109/LRA.2017.2720851
– ident: 10675_CR43
– ident: 10675_CR24
  doi: 10.1109/ICRA48891.2023.10160851
– ident: 10675_CR5
  doi: 10.1109/IROS55552.2023.10341871
– volume: 3
  start-page: 620
  issue: 2
  year: 2018
  ident: 10675_CR42
  publication-title: IEEE Robot Automat Lett
  doi: 10.1109/LRA.2017.2776353
– volume: 104
  start-page: 22
  issue: 2
  year: 2022
  ident: 10675_CR1
  publication-title: J Intell Robotic Syst
  doi: 10.1007/s10846-021-01527-7
– ident: 10675_CR28
  doi: 10.48550/arXiv.1707.06347
– ident: 10675_CR36
  doi: 10.1002/9780470316887
– volume: 11
  start-page: 1510
  issue: 2
  year: 2024
  ident: 10675_CR13
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2023.3325002
– volume: 33
  start-page: 129
  year: 2012
  ident: 10675_CR10
  publication-title: Auton Robot
  doi: 10.1007/s10514-012-9280-5
– volume: 10
  start-page: 2
  year: 2020
  ident: 10675_CR3
  publication-title: Int J Comput Digit Syst
– ident: 10675_CR39
  doi: 10.48550/arXiv.1506.02438
SSID ssj0004685
Score 2.369085
Snippet Executing accurate trajectory tracking tasks using a high-performance low-level controller is crucial for quadrotors to be applied in various scenarios,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1223
SubjectTerms Accuracy
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Control algorithms
Control methods
Controllers
Data Mining and Knowledge Discovery
Deep learning
Disturbances
Hovering
Image Processing and Computer Vision
Initial conditions
Methods
Original Article
Probability and Statistics in Computer Science
Proportional integral derivative
Robotics
Robust control
Rotary wing aircraft
Simulation
Tracking
Unmanned aerial vehicles
Velocity
Vibration control
Title Aggressive and robust low-level control and trajectory tracking for quadrotors with deep reinforcement learning
URI https://link.springer.com/article/10.1007/s00521-024-10675-4
https://www.proquest.com/docview/3159550125
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aPXixrlitkoM3DXSyNJNjEYsHKeJGb0O2KUrp1Jmp4r83SWdaFT3obSDDI7y85O3vA-A0JtTGqaRIRYoiqgVGwg-8dJpIEyOZsDo0Cl_zwSAeDsVN1RRW1NXudUoyvNSLZjcfwXSuL6bIjz1jiK6CNafuYg_YcHv3-KkbMgBxOr_F1_RQUrXK_Ezjqzpa2pjf0qJB2_Sb_9vnFtisrEvYm4vDNlixkx3QrJEbYHWRd0HWGwU_2z11UE4MzDM1K0o4zt7Q2FcRwaqCPSyWuXwOsf13_6l9bB06Uxe-zKTJM4_WA300FxprpzC3YRSrDlFHWGFSjPbAQ__y_uIKVdALSDsFThFmkltNFVNc-NRdF2seqcgakrJICaKp6WhsNVbWSQExODVRLGNlUss7JkrJPmhMsok9ALAruJbOaGKWMmqUig3hKRW-carDJYta4Kw-gWQ6n7CRLGYpB14mjpdJ4GVCW6BdH1JS3bYiIZ48c6qWtcB5fSjL5d-pHf7t9yOwgT38b4jAtEGjzGf2GKzr1_KpyE-CFH4Aab_YzA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poG1Sdb2cYhj4hyiU_ZW8tWhjHV2m-J_b5K1m4o-6Fsh5QiXS-7ud18ApyGhOkw4xcITFFMZ-TiyDS-NJpJEcRZp6QqF20GnE_Z60W1eFDYust2LkKR7qefFbhbBNK6vT7Fte8YwXYYVajSW7Zh_d__4qRrSDeI0fovN6aEkL5X5mcZXdbSwMb-FRZ22aZb_t89N2MitS9SYicMWLOnhNpSLyQ0ov8g7kDb6zs82Tx3iQ4WyVEzHEzRI3_DAZhGhPIPdLU4y_uyw_Xf7KS22joypi16mXGWpndaDLJqLlNYjlGnXilU61BHlMyn6u_DQvOxetHA-egFLo8Ap9hkPtKSCiSCyobu6LwNPeFqRhHkiIpKqmvS19IU2UkCUnygv5KFQiQ5qykvIHpSG6VDvA6pHgeTGaGKaMqqECBUJEhrZwqlawJlXgbPiBOLRrMNGPO-l7HgZG17GjpcxrUC1OKQ4v23jmFjyzKhaVoHz4lAWy79TO_jb7yew1uretOP2Vef6ENZ9OwrYoTFVKE2yqT6CVfk6eRpnx04iPwCcstuw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_edLHJ7prkWNSiKEXwgbdlXymKJDVNFf-9u9vEF3oQb4ENQ5iZzTy_GYDdmFATp4JiGUiKqUpCnLiBl9YSKaIFS4zyQOGLqN-P7-6Sy08oft_tXpckJ5gGN6UpKw-GOj14B765bKYNg0OK3Qg0huk0zFDXSO_i9avbT8hIv5TTxjCuv4eSCjbzM42vpunD3_xWIvWWp9f8_zcvwkLldaLuRE2WYMpky9CsNzqg6oKvQN4d-Pjb_gKRyDQqcjkelegxf8GPrrsIVZ3t_rAsxIPP-b-6R-Vy7si6wOhpLHSRuy0-yGV5kTZmiArjR7Qqn41E1a6KwSrc9E6uj05xtZIBK2vYKQ6ZiIyikskocSW9w1BFgQyMJikLZEIU1R0VGhVKY7WD6DDVQSxiqVMTdXSQkjVoZHlm1gEdJpES1plihjKqpYw1iVKaOEBVJxIsaMFeLQ0-nEze4O8zlj0vueUl97zktAXtWmC8uoUjThx5Zk0wa8F-LaCP49-pbfzt9R2Yuzzu8Yuz_vkmzIduQ7BP0rShURZjswWz6rm8HxXbXjnfAEfY5JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aggressive+and+robust+low-level+control+and+trajectory+tracking+for+quadrotors+with+deep+reinforcement+learning&rft.jtitle=Neural+computing+%26+applications&rft.au=Chen%2C+Shiyu&rft.au=Li%2C+Yanjie&rft.au=Lou%2C+Yunjiang&rft.au=Lin%2C+Ke&rft.date=2025-01-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=3&rft.spage=1223&rft.epage=1240&rft_id=info:doi/10.1007%2Fs00521-024-10675-4&rft.externalDocID=10_1007_s00521_024_10675_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon