Predictive models of behavior and capacity of FRP reinforced concrete columns

This paper proposes a new model for predicting the axial capacity and behavior of Fiber Reinforced Polymerreinforced concrete (FRP-RC) columns using a promising variant of Genetic Expression Programming (GEP). Current design codes, such as the ACI 440.1R-15 and the Canadian Code CSA S806, disregard...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Engineering Science Vol. 21; no. 2; pp. 143 - 156
Main Authors: Momani, Yazan, Tarawneh, Ahmad, Alawadi, Roaa, Taqieddin, Ziad, Jweihan, Yazeed, Saleh, Eman
Format: Journal Article
Language:English
Published: 2023
ISSN:1451-4117, 1821-3197
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a new model for predicting the axial capacity and behavior of Fiber Reinforced Polymerreinforced concrete (FRP-RC) columns using a promising variant of Genetic Expression Programming (GEP). Current design codes, such as the ACI 440.1R-15 and the Canadian Code CSA S806, disregard the compressive contribution of FRP bars when used in compression members. The behavior of concentrically short FRP-RC columns has been widely investigated in the past few years; however, limited research has been dedicated to investigating the effect of load eccentricity and the slenderness ratio of FRP-RC columns. In addition, the methodologies adopted for including the effect of column slenderness remain a subject of debate, as no solid conclusions are withdrawn in this regard. In this paper, the experimental results of FRP-RC columns are gathered from the literature and used to formulate two GEP models to predict the axial capacity based on load eccentricity. The experimental data includes columns reinforced with different FRP types and subjected to concentric and eccentric axial compressive loads. In addition, the database comprises short and slender columns. The proposed GEP models are functions of concrete compressive strength, longitudinal reinforcing bars ratio, FRP bars elastic modulus, eccentricity level, and column dimensions. For the aim of comparison, a preliminary evaluation of previously suggested empirical equations/models for estimating the axial capacity of FRP-RC columns was carried out over the collected database. The proposed models showed superior accuracy in axial capacity prediction with coefficients of determination R2 equals to 0.978 and R2 equal to 0.992 for eccentric and concentric axial load, respectively. The proposed models were found to give reliable estimates of the axial capacity of columns reinforced with FRP longitudinal bars. Finally, a parametric study to evaluate the effect of each variable on the proposed models was conducted.
AbstractList This paper proposes a new model for predicting the axial capacity and behavior of Fiber Reinforced Polymerreinforced concrete (FRP-RC) columns using a promising variant of Genetic Expression Programming (GEP). Current design codes, such as the ACI 440.1R-15 and the Canadian Code CSA S806, disregard the compressive contribution of FRP bars when used in compression members. The behavior of concentrically short FRP-RC columns has been widely investigated in the past few years; however, limited research has been dedicated to investigating the effect of load eccentricity and the slenderness ratio of FRP-RC columns. In addition, the methodologies adopted for including the effect of column slenderness remain a subject of debate, as no solid conclusions are withdrawn in this regard. In this paper, the experimental results of FRP-RC columns are gathered from the literature and used to formulate two GEP models to predict the axial capacity based on load eccentricity. The experimental data includes columns reinforced with different FRP types and subjected to concentric and eccentric axial compressive loads. In addition, the database comprises short and slender columns. The proposed GEP models are functions of concrete compressive strength, longitudinal reinforcing bars ratio, FRP bars elastic modulus, eccentricity level, and column dimensions. For the aim of comparison, a preliminary evaluation of previously suggested empirical equations/models for estimating the axial capacity of FRP-RC columns was carried out over the collected database. The proposed models showed superior accuracy in axial capacity prediction with coefficients of determination R2 equals to 0.978 and R2 equal to 0.992 for eccentric and concentric axial load, respectively. The proposed models were found to give reliable estimates of the axial capacity of columns reinforced with FRP longitudinal bars. Finally, a parametric study to evaluate the effect of each variable on the proposed models was conducted.
Author Jweihan, Yazeed
Momani, Yazan
Saleh, Eman
Alawadi, Roaa
Tarawneh, Ahmad
Taqieddin, Ziad
Author_xml – sequence: 1
  givenname: Yazan
  surname: Momani
  fullname: Momani, Yazan
– sequence: 2
  givenname: Ahmad
  surname: Tarawneh
  fullname: Tarawneh, Ahmad
– sequence: 3
  givenname: Roaa
  surname: Alawadi
  fullname: Alawadi, Roaa
– sequence: 4
  givenname: Ziad
  surname: Taqieddin
  fullname: Taqieddin, Ziad
– sequence: 5
  givenname: Yazeed
  surname: Jweihan
  fullname: Jweihan, Yazeed
– sequence: 6
  givenname: Eman
  surname: Saleh
  fullname: Saleh, Eman
BookMark eNptkFFLwzAUhYNMcM49-Qf6LtUmaZr2UYZzwsQh-lySmxuMtMlI6mD_3nb6JD6dcznnXrjfJZn54JGQa1rciobLu0-Fqch5Ixk_I3NaM5pz2sjZ6EtB85JSeUGWKTldME4ryet6Tp53EY2DwR0w64PBLmXBZho_1MGFmClvMlB7BW44TsH6dZdFdN6GCDhGwUPEAUfTffU-XZFzq7qEy19dkPf1w9tqk29fHp9W99scaC14jqBNYwEBGMUKhdC1RabLxqjSaMEQjOVyHGGSyvAKK6pZ1UjFDBecL8jNz12IIaWItt1H16t4bGnRTjDaE4z2BGNs0z_t8R01uOCHqFz37843LoVmsw
CitedBy_id crossref_primary_10_3390_su16010011
crossref_primary_10_3390_buildings14020441
crossref_primary_10_1080_15376494_2024_2448297
crossref_primary_10_1016_j_istruc_2024_107651
crossref_primary_10_1007_s41939_024_00659_1
crossref_primary_10_3390_jcs8040145
crossref_primary_10_1007_s41062_024_01738_5
Cites_doi 10.1061/(ASCE)BE.1943-5592.0000590
10.1016/j.engstruct.2017.08.064
10.14359/51723507
10.1061/(ASCE)CC.1943-5614.0000748
10.1016/j.engstruct.2020.111221
10.1061/(ASCE)CC.1943-5614.0001088
10.14359/51663912
10.14359/51701279
10.14359/51683874
10.1061/(ASCE)ST.1943-541X.0003389
10.1016/j.istruc.2018.04.001
10.1061/9780784482230.010
10.1007/s41062-021-00504-1
10.1016/j.engstruct.2016.03.036
10.14359/51701131
10.14359/51701107
10.1016/j.istruc.2021.03.081
10.1061/(ASCE)CC.1943-5614.0001115
10.1016/j.engstruct.2017.08.023
10.1155/2019/1769212
10.1061/(ASCE)CC.1943-5614.0000438
10.1002/clen.200800010
10.1016/j.engstruct.2019.01.143
10.1016/j.conbuildmat.2017.06.159
10.1260/1708-5284.9.1.71
10.14359/51715634
10.1016/j.istruc.2020.10.010
10.1061/(ASCE)CC.1943-5614.0000670
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5937/jaes0-39723
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 1821-3197
EndPage 156
ExternalDocumentID 10_5937_jaes0_39723
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
OK1
ID FETCH-LOGICAL-c1853-ecbd9fcecc21e6e55b8fe2b49da4db52ecdf3749dcf3746d36e61b2697a2d3533
ISSN 1451-4117
IngestDate Tue Nov 18 22:12:42 EST 2025
Sat Nov 29 01:48:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/BY/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1853-ecbd9fcecc21e6e55b8fe2b49da4db52ecdf3749dcf3746d36e61b2697a2d3533
OpenAccessLink https://aseestant.ceon.rs/index.php/jaes/article/download/39723/21653
PageCount 14
ParticipantIDs crossref_primary_10_5937_jaes0_39723
crossref_citationtrail_10_5937_jaes0_39723
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Journal of Applied Engineering Science
PublicationYear 2023
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref35
  doi: 10.1061/(ASCE)BE.1943-5592.0000590
– ident: ref5
– ident: ref25
  doi: 10.1016/j.engstruct.2017.08.064
– ident: ref31
  doi: 10.14359/51723507
– ident: ref7
– ident: ref20
– ident: ref9
  doi: 10.1061/(ASCE)CC.1943-5614.0000748
– ident: ref22
– ident: ref16
  doi: 10.1016/j.engstruct.2020.111221
– ident: ref32
  doi: 10.1061/(ASCE)CC.1943-5614.0001088
– ident: ref6
  doi: 10.14359/51663912
– ident: ref13
  doi: 10.14359/51701279
– ident: ref10
  doi: 10.14359/51683874
– ident: ref1
  doi: 10.1061/(ASCE)ST.1943-541X.0003389
– ident: ref24
  doi: 10.1016/j.istruc.2018.04.001
– ident: ref30
  doi: 10.1061/9780784482230.010
– ident: ref18
  doi: 10.1007/s41062-021-00504-1
– ident: ref4
– ident: ref33
  doi: 10.1016/j.engstruct.2016.03.036
– ident: ref19
  doi: 10.14359/51701131
– ident: ref12
  doi: 10.14359/51701107
– ident: ref17
  doi: 10.1016/j.istruc.2021.03.081
– ident: ref34
  doi: 10.1061/(ASCE)CC.1943-5614.0001115
– ident: ref8
  doi: 10.1016/j.engstruct.2017.08.023
– ident: ref21
– ident: ref28
  doi: 10.1155/2019/1769212
– ident: ref23
– ident: ref11
  doi: 10.1061/(ASCE)CC.1943-5614.0000438
– ident: ref15
  doi: 10.1002/clen.200800010
– ident: ref2
  doi: 10.1016/j.engstruct.2019.01.143
– ident: ref26
  doi: 10.1016/j.conbuildmat.2017.06.159
– ident: ref27
  doi: 10.1260/1708-5284.9.1.71
– ident: ref3
  doi: 10.14359/51715634
– ident: ref14
  doi: 10.1016/j.istruc.2020.10.010
– ident: ref29
  doi: 10.1061/(ASCE)CC.1943-5614.0000670
SSID ssib023167388
ssib044742397
ssib046627593
Score 2.2994583
Snippet This paper proposes a new model for predicting the axial capacity and behavior of Fiber Reinforced Polymerreinforced concrete (FRP-RC) columns using a...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 143
Title Predictive models of behavior and capacity of FRP reinforced concrete columns
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1821-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044742397
  issn: 1451-4117
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvVRGtCm2RD5xAaWvHeR1RBeIAaIUWCXpZ-RV1qyVLwxZQD_0P_ccde-wkQiDRQy_ZjdfOQ_PtPOyZz4Rs50LqQrM6YVypRKRFlqi0ZokVVuaaf1YMKfOPipOT8vy8Go9Gf2ItzM28aJry7q66-q-ihjYQtiud_QdxdxeFBvgOQocjiB2OTxL8uHVrLz4jyG9z43M1YjU-lrGBgdQhFePgdLzbWk-f6jIBIDoGN3LpUthBa4WZvMd91wGbYdQSnQQXl7hd1O6F_NVDcCJbedtYP5mz9-1Smg5xc3krzQyzvaXs-_-AGxlkOvg6C_3DNAXWEAedKjIIUxmWaH602FZyBuofU3OjIsZS6QA4PtCqDJmcgoFmyER-X_dnlWcP-C7tNVgWt5lab-Lisv49y9flI0Ik5IZP_eCpH_yMrPICoi2XDfp7P6oo7ogD0p7hTQi30t0vxArPp--pnrvXxqpQd_1Pg4cb-EEDh2byirwM0qR7iKA1MrLNOjnu0UMRPXRR04geCuihET3uB0AP7dFDI3poQM9rcnawP_lymIQdNxLt_LbEamWqWsPfmjOb2yxTZW25EpWRwqiMW23qtIBT7T5yk-Y2Z4rnVSG5SSFyeENWmkVj3xKqjdVSZEabMncURNIIw7kG79WkRSnLDbIT33-qAx292xVlPn1AGBtku-t8hSwsD3XbfFq3d-SFQyhOpL0nK8v2p_1Anuub5ey63fLy_gut4X7z
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+models+of+behavior+and+capacity+of+FRP+reinforced+concrete+columns&rft.jtitle=Journal+of+Applied+Engineering+Science&rft.au=Momani%2C+Yazan&rft.au=Tarawneh%2C+Ahmad&rft.au=Alawadi%2C+Roaa&rft.au=Taqieddin%2C+Ziad&rft.date=2023&rft.issn=1451-4117&rft.eissn=1821-3197&rft.volume=21&rft.issue=2&rft.spage=143&rft.epage=156&rft_id=info:doi/10.5937%2Fjaes0-39723&rft.externalDBID=n%2Fa&rft.externalDocID=10_5937_jaes0_39723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4117&client=summon