Application of Deep Learning Algorithms to the Study of the Relationship between Acoustic Emission Signals and Grinding Force Parameters
The article considers prediction of cutting force components based on analysis of acoustic emission (AE) signals using deep learning algorithms. Based on pre-processing and synchronization of experimental data obtained during grinding of a heat-resistant nickel alloy, a training sample based on spec...
Uloženo v:
| Vydáno v: | Russian engineering research Ročník 45; číslo 6; s. 765 - 770 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.06.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1068-798X, 1934-8088 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The article considers prediction of cutting force components based on analysis of acoustic emission (AE) signals using deep learning algorithms. Based on pre-processing and synchronization of experimental data obtained during grinding of a heat-resistant nickel alloy, a training sample based on spectrograms of AE signals is compiled. Using a trained and specially modified ResNet-34 network, a highly accurate (coefficient of determination
R
2
= 0.903) predictive model is created. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1068-798X 1934-8088 |
| DOI: | 10.3103/S1068798X25701242 |