Application of Deep Learning Algorithms to the Study of the Relationship between Acoustic Emission Signals and Grinding Force Parameters
The article considers prediction of cutting force components based on analysis of acoustic emission (AE) signals using deep learning algorithms. Based on pre-processing and synchronization of experimental data obtained during grinding of a heat-resistant nickel alloy, a training sample based on spec...
Gespeichert in:
| Veröffentlicht in: | Russian engineering research Jg. 45; H. 6; S. 765 - 770 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.06.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1068-798X, 1934-8088 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!