Neural network-based soil parameters predictive coordination algorithm for energy efficient wireless sensor network

The utilization of Wireless Sensor Networks (WSN) in the agricultural field represents a significant stride in the application of Information Technology. Recent advancements in technology have made it possible for sensor networks not only to provide real-time information about soil nutrient levels b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing Vol. 15; no. 11; pp. 3733 - 3743
Main Authors: Sharma, Dinesh, Tomar, Geetam Singh
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Subjects:
ISSN:1868-5137, 1868-5145
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The utilization of Wireless Sensor Networks (WSN) in the agricultural field represents a significant stride in the application of Information Technology. Recent advancements in technology have made it possible for sensor networks not only to provide real-time information about soil nutrient levels but also to assist in the automation of various agricultural processes. However, it’s crucial to acknowledge a substantial limitation associated with WSN, namely, energy consumption. Through the analysis of experimental data gathered from diverse soil types and employing sophisticated data analytics, it has been observed that the Nutrient Index exhibits a relatively stable pattern over time. Consequently, predictive neural network techniques can be employed to extract detailed insights from the primary inputs received from WSN. This approach eliminates the need for continuous operation of the WSN throughout the day, contributing to enhanced energy efficiency. To achieve this energy-efficient operation, the NR-MDEC protocol is implemented in conjunction with a coordination algorithm, resulting in a substantial improvement in overall efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-024-04848-1