LLM-Assisted Automatic Memetic Algorithm for Lot-Streaming Hybrid Job Shop Scheduling With Variable Sublots

This study addresses the lot-streaming hybrid job shop scheduling problem with variable sublots (LHJSV), inspired by a real-world aircraft tooling shop. A computational model is developed to represent the complex scheduling processes of the tooling shop. To solve this problem, we propose an automati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation s. 1
Hlavní autori: Li, Rui, Wang, Ling, Sang, Hongyan, Yao, Lizhong, Pan, Lijun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study addresses the lot-streaming hybrid job shop scheduling problem with variable sublots (LHJSV), inspired by a real-world aircraft tooling shop. A computational model is developed to represent the complex scheduling processes of the tooling shop. To solve this problem, we propose an automatic memetic algorithm enhanced by a heuristic designed with the assistance of a large language model (LLM). The approach is designed as follows: first, a memetic computing framework with automated algorithmic design is proposed for LHJSV. Second, a cooperative evolutionary heuristic framework based on problem decomposition is introduced, enabling the LLM to comprehend the LHJSV characteristics and generate feasible algorithms. Third, problem-specific prompts for LHJSV are carefully designed to guide the LLM. To evaluate the effectiveness of the proposed method, 20 benchmark instances derived from the Taillard dataset and a real-world case involving 575 operations are utilized. The proposed algorithm is compared against three swarm-based algorithms, an end-to-end method, and an LLM-based algorithm. Experimental results demonstrate that our method outperforms the compared algorithms on 85% of benchmark instances and exhibits significant superiority in real-world scenarios.
AbstractList This study addresses the lot-streaming hybrid job shop scheduling problem with variable sublots (LHJSV), inspired by a real-world aircraft tooling shop. A computational model is developed to represent the complex scheduling processes of the tooling shop. To solve this problem, we propose an automatic memetic algorithm enhanced by a heuristic designed with the assistance of a large language model (LLM). The approach is designed as follows: first, a memetic computing framework with automated algorithmic design is proposed for LHJSV. Second, a cooperative evolutionary heuristic framework based on problem decomposition is introduced, enabling the LLM to comprehend the LHJSV characteristics and generate feasible algorithms. Third, problem-specific prompts for LHJSV are carefully designed to guide the LLM. To evaluate the effectiveness of the proposed method, 20 benchmark instances derived from the Taillard dataset and a real-world case involving 575 operations are utilized. The proposed algorithm is compared against three swarm-based algorithms, an end-to-end method, and an LLM-based algorithm. Experimental results demonstrate that our method outperforms the compared algorithms on 85% of benchmark instances and exhibits significant superiority in real-world scenarios.
Author Yao, Lizhong
Sang, Hongyan
Pan, Lijun
Li, Rui
Wang, Ling
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0001-5335-9453
  surname: Li
  fullname: Li, Rui
  email: li-r23@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Ling
  orcidid: 0000-0003-1226-2801
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Hongyan
  orcidid: 0000-0001-7476-5039
  surname: Sang
  fullname: Sang, Hongyan
– sequence: 4
  givenname: Lizhong
  orcidid: 0000-0001-5765-9349
  surname: Yao
  fullname: Yao, Lizhong
  email: lizhong yao@cqnu.edu.cn
  organization: College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, China
– sequence: 5
  givenname: Lijun
  surname: Pan
  fullname: Pan, Lijun
  email: pansoftware@126.com
  organization: School of Management, HUNAN Institute of Engineering, XiangTan, China
BookMark eNp9kEFPwjAYhhuDiYD-ABMP_QPDfmzd2iMhKJoRDyB6W7r1G1Q3Stpy4N_LAgfjwdP7JW-e702eAent7A4JuQc2AmDycTVbT0djNuajmPMURHpF-iATiBgbp73TzYSMskx83pCB91-MQcJB9sl3ni-iiffGB9R0cgi2VcFUdIEtdjlpNtaZsG1pbR3NbYiWwaFqzW5D58fSGU1fbUmXW7uny2qL-tB01ccJoWvljCobpMtD2djgb8l1rRqPd5cckven2Wo6j_K355fpJI8qEHGIMM40V7rSArjOUsQ4TUBoVCIB4HUpZFzVAiDmZZIhMil1rYRQiUBIpazjIYHz38pZ7x3Wxd6ZVrljAazobBWdraKzVVxsnZjsD1OZcDJhd8Ep0_xLPpxJg4i_lmTCBUviHxT0eys
CODEN ITEVF5
CitedBy_id crossref_primary_10_1080_09544828_2025_2550934
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3556186
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3556186
10945804
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2023YFB3308002
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62273193; 62473186
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China Regional United Development Fund
  grantid: U24A20273
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ID FETCH-LOGICAL-c183t-e37d5adcd815d76ee36418dea84115fb893cf81135b47ee099dfa88a48e1699f3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sat Nov 29 08:04:12 EST 2025
Tue Nov 18 22:37:09 EST 2025
Wed Aug 27 02:04:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c183t-e37d5adcd815d76ee36418dea84115fb893cf81135b47ee099dfa88a48e1699f3
ORCID 0000-0001-7476-5039
0000-0001-5335-9453
0000-0001-5765-9349
0000-0003-1226-2801
PageCount 1
ParticipantIDs crossref_primary_10_1109_TEVC_2025_3556186
crossref_citationtrail_10_1109_TEVC_2025_3556186
ieee_primary_10945804
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.4875665
Snippet This study addresses the lot-streaming hybrid job shop scheduling problem with variable sublots (LHJSV), inspired by a real-world aircraft tooling shop. A...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aircraft
Aircraft manufacture
Automatic algorithm design
Complexity theory
Computational modeling
Evolutionary Computation
Heuristic algorithms
Job shop scheduling
Large language model
Lot-streaming scheduling
Memetic Computing
Memetics
Parallel machines
Processor scheduling
Scheduling
Title LLM-Assisted Automatic Memetic Algorithm for Lot-Streaming Hybrid Job Shop Scheduling With Variable Sublots
URI https://ieeexplore.ieee.org/document/10945804
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA0qHvTgt_hNDp6E6NamTXJcRBFZRVDXvZU2mbiLu1tZu4L_3pm0yl4UvJWSoaUv08xk8t4wdqx1kfqipYVMJQhpCisK5aUAbY2xsfXnYcOt21F3d7rXM_cNWT1wYQAgHD6DU7oMtXxX2iltlaGHG5loUv-cV0rVZK2fkgHppNSn6Q2GjLrXlDDR5uzxsnuBqeB5chpTN0jiTc8sQjNdVcKicrX6z9dZYytN9MjbNdzrbA7GG2z1uzMDbxx1gy3PyAxustdO51YgDoSo4-1pVQadVn4LI6Iw8vbwpZwMqv6IYwTLO2UlqFadj9CYX38SpYvflAV_6Jdv-Ig-Lk7EYefPaMK7mGsT-4rjH2hYVu9b7Onq8vHiWjRNFoRFb64ExMolubNOR4lTKUCcykg7yLXEYNEXGM9Yr6MoTgqpADCgdD7XOpcaotQYH2-zhXE5hh3GTeJ9GvmokC4IpRkvY6eNwxzGyVypXdb6_uqZbRTIqRHGMAuZSMtkBFRGQGUNULvs5MfkrZbf-GvwFoE0M7DGZ--X-_tsiczrDZUDtlBNpnDIFu1HNXifHIXZ9QWcLM0U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYQmzQ4wAZM_NiYD5wmGZrGSexjVRV1kFZIlK63KLGfV0TboJIi7b_nPSegXjaJWxT5JVG-OH4__H2PsTOlitgVLSVkLEFIXRhRJE4KUEZrExrX9gm3cZoMh2oy0TcNWd1zYQDAbz6Dczr0tXxbmhWlynCGaxkpUv_8EEnZDmq61lvRgJRS6v30Gp1GNWmKmGh1MeqNuxgMtqPzkPpBEnN6bRla66vil5XL3Xc-0Ge20_iPvFMD_oVtwGKP7b72ZuDNVN1j22tCg_vsIU0HApEgTC3vrKrSK7XyAcyJxMg7sz_l8r6azjn6sDwtK0HV6nyOxrz_l0hd_Kos-O20fMRbTHF5IhY7_40mfIzRNvGvOP6DZmX1dMDuLnujbl80bRaEwflcCQgTG-XWWBVENokBwlgGykKuJLqLrkCPxjgVBGFUyAQAXUrrcqVyqSCItXbhV7a5KBdwyLiOnIsDFxTSeqk07WRolbYYxViZJ8kRa72-9cw0GuTUCmOW-VikpTMCKiOgsgaoI_bzzeSxFuD43-ADAmltYI3P8T_O_2Cf-qNBmqW_htcnbIsuVadXvrHNarmC7-yjea7un5an_kt7AXE70Fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLM-Assisted+Automatic+Memetic+Algorithm+for+Lot-Streaming+Hybrid+Job+Shop+Scheduling+With+Variable+Sublots&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Rui&rft.au=Wang%2C+Ling&rft.au=Sang%2C+Hongyan&rft.au=Yao%2C+Lizhong&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3556186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3556186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon