Fake news detection algorithms – A systematic literature review

Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or false. It is remarkable that, with the evolution of Industry 4.0 technologies, the production and dissemination of fake news also increased in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data & knowledge engineering Ročník 158; s. 102441
Hlavní autoři: Dal Forno, Ana Julia, Richetti, Graziela Piccoli, Knaesel, Vinícius Heinz
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2025
Témata:
ISSN:0169-023X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or false. It is remarkable that, with the evolution of Industry 4.0 technologies, the production and dissemination of fake news also increased in recent years. Some content quickly reaches considerable popularity because it is accessed and shared on a large scale, especially in social networks, thus having a potential for going viral. Thus, this study aimed to identify the algorithms and software used for fake news detection. The choice for this combination is justified because in Brazil this process is carried out manually by verification agencies and thus, based on the mapping of the algorithms identified in the literature, an architecture proposal will be developed using artificial intelligence. As a methodology, a systematic literature review (SLR) was conducted in the Science Direct and Scopus databases using the keywords "fake news" and "machine learning" to locate reviews and research articles published in Engineering fields from 2018 to 2023. A total of 24 articles were analyzed, and the results pointed out that Facebook and X11Twitter has been renamed to X on July 23, 2023. were the social networks most used to disseminate fake news. Moreover, the main topics addressed were the COVID-19 pandemic and the United States presidential elections of 2016 and 2020. As for the most used algorithms, a predominance of neural networks was observed. The contribution of this study is in mapping the most used algorithms and their degree of assertiveness, as well as identifying the themes, countries and related researchers that help in the evolution of the fake news theme.
AbstractList Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or false. It is remarkable that, with the evolution of Industry 4.0 technologies, the production and dissemination of fake news also increased in recent years. Some content quickly reaches considerable popularity because it is accessed and shared on a large scale, especially in social networks, thus having a potential for going viral. Thus, this study aimed to identify the algorithms and software used for fake news detection. The choice for this combination is justified because in Brazil this process is carried out manually by verification agencies and thus, based on the mapping of the algorithms identified in the literature, an architecture proposal will be developed using artificial intelligence. As a methodology, a systematic literature review (SLR) was conducted in the Science Direct and Scopus databases using the keywords "fake news" and "machine learning" to locate reviews and research articles published in Engineering fields from 2018 to 2023. A total of 24 articles were analyzed, and the results pointed out that Facebook and X11Twitter has been renamed to X on July 23, 2023. were the social networks most used to disseminate fake news. Moreover, the main topics addressed were the COVID-19 pandemic and the United States presidential elections of 2016 and 2020. As for the most used algorithms, a predominance of neural networks was observed. The contribution of this study is in mapping the most used algorithms and their degree of assertiveness, as well as identifying the themes, countries and related researchers that help in the evolution of the fake news theme.
ArticleNumber 102441
Author Richetti, Graziela Piccoli
Knaesel, Vinícius Heinz
Dal Forno, Ana Julia
Author_xml – sequence: 1
  givenname: Ana Julia
  orcidid: 0000-0003-2441-5385
  surname: Dal Forno
  fullname: Dal Forno, Ana Julia
  email: ana.forno@ufsc.br
  organization: Professor at Postgraduate Program in Textile Engineering, Textile Engineering Department, Santa Catarina Federal University – UFSC campus Blumenau, Rua Eng. Udo Deeke, 485 - Bairro Salto do Norte, CEP 89065-100, Blumenau, SC, Brazil
– sequence: 2
  givenname: Graziela Piccoli
  orcidid: 0000-0001-9868-7768
  surname: Richetti
  fullname: Richetti, Graziela Piccoli
  email: graziela.richetti@ufsc.br
  organization: Department of Exact Sciences and Education, Santa Catarina Federal University - UFSC campus Blumenau, Blumenau, SC, Brazil
– sequence: 3
  givenname: Vinícius Heinz
  orcidid: 0009-0007-2106-5187
  surname: Knaesel
  fullname: Knaesel, Vinícius Heinz
  email: heinz.knaesel@gmail.com
  organization: Textile Engineer, Santa Catarina Federal University - UFSC campus Blumenau, Blumenau, SC, Brazil
BookMark eNp9jzFOAzEQRV0EiSRwAhpfYIPttTe7BUUUEUCKRAMSnTXYY_Am2UW2IUrHHbghJ8FhqalGmq_39d-EjLq-Q0IuOJtxxqvLdmYhwWYmmFD5I6TkIzLOSVMwUT6dkkmMLWM5YGpMFivYIO1wH6nFhCb5vqOwfemDT6-7SL8_v-iCxkNMuIPkDd36hAHSe0Aa8MPj_oycONhGPP-7U_K4un5Y3hbr-5u75WJdGF6XqQCpFGsklMY2NWsaDopLBY7Ds3NM4byqmOCKOwOukqZ0c7TcCrC1VLVtsJyScug1oY8xoNNvwe8gHDRn-miuW_1rro_mejDP1NVAYZ6W5wYdjcfOoPUh22rb-3_5HxZtZ8g
Cites_doi 10.23860/JMLE-2018-10-2-7
10.1080/21670811.2017.1360143
10.1007/978-3-030-90087-8_1
10.1016/j.asoc.2021.107614
10.1016/j.knosys.2022.108378
10.1016/j.asoc.2020.107050
10.1016/j.comcom.2022.01.003
10.1016/j.asoc.2023.110125
10.1007/s11192-009-0146-3
10.1016/j.ipm.2021.102569
10.1016/j.compeleceng.2022.107967
10.1016/j.knosys.2022.109649
10.1109/IJCB48548.2020.9304909
10.1109/ACCESS.2021.3056079
10.1016/j.jnca.2021.103112
10.5585/2023.24970
10.1016/j.engappai.2023.106088
10.1016/j.compind.2018.06.004
10.1016/j.techfore.2019.05.021
10.5195/jmla.2022.1434
10.1016/j.asoc.2021.107360
10.1016/j.techsoc.2020.101454
10.1007/s42452-020-2326-y
10.1109/ACCESS.2021.3068659
10.1016/j.datak.2023.102182
10.1109/ACCESS.2024.3435497
10.1016/j.asoc.2021.107175
10.1016/j.asej.2023.102166
10.1016/j.asoc.2021.107559
10.1109/ACCESS.2021.3112806
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.datak.2025.102441
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_datak_2025_102441
S0169023X25000369
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAAKG
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
77I
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c183t-a455094a3cd980991a5145af1abff05e76602151fcaf64c3f7ed1d2ad8458d9e3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455199100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-023X
IngestDate Sat Nov 29 07:58:48 EST 2025
Sat Jun 07 17:02:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Engineering
Neural network
Artificial intelligence
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c183t-a455094a3cd980991a5145af1abff05e76602151fcaf64c3f7ed1d2ad8458d9e3
ORCID 0009-0007-2106-5187
0000-0001-9868-7768
0000-0003-2441-5385
ParticipantIDs crossref_primary_10_1016_j_datak_2025_102441
elsevier_sciencedirect_doi_10_1016_j_datak_2025_102441
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Data & knowledge engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rohman, Khairani, Hulliyah, Arini, Lakoni (bib0024) Sep. 2021
Ayoub, Yang, Zhou (bib0047) Jul. 2021; 58
Chi, Liao (bib0034) Apr. 2022; 242
CNI, “Challenges for industry 4.0 in Brazil,” Brasília, 2016.
Globo, “G1 Fato ou Fake,”
Horváth, Zs. Szabó (bib0011) Sep. 2019; 146
Qureshi, Malick, Sabih, Cherifi (bib0038) Nov. 2022; 256
H. Kagermann, W. Wahlster, and J. Helbig, “Securing the future of german manufacturing industry: recommendations for implementing the strategic initiative industrie 4.0,” German, 2013.
Choudhary, Chouhan, Pilli, Vipparthi (bib0015) Oct. 2021; 110
Hua, Cui, Li, Tang, Zhu (bib0003) Mar. 2023; 136
van Eck, Waltman (bib0027) Aug. 2010; 84
Sivek (bib0012) 2018; 10
Choraś (bib0018) Mar. 2021; 101
Sudhakar, Kaliyamurthie (bib0017) Dec. 2022; 24
Opdahl (bib0050) Jul. 2023; 146
Ilias, Roussaki (bib0037) Aug. 2021; 107
Ayoub, Yang, Zhou (bib0033) Jul. 2021; 58
Sharma, Sharma, Kr. Dwivedi (bib0046) Oct. 2023; 14
Hua, Cui, Li, Tang, Zhu (bib0016) Mar. 2023; 136
Hassan, Gomaa, Khoriba, Haggag (bib0052) Feb. 2020; 13
Kipper (bib0009) 2021; 64
Sheikhi (bib0002) Sep. 2021; 109
Vosoughi, Roy, Aral (bib0005) 2018; 359
Dhawan, Bhalla, Arora, Kaushal, Kumaraguru (bib0035) Mar. 2022; 185
.
T. Khan, A. Michalas, and A. Akhunzada, “Fake news outbreak 2021: can we stop the viral spread?,” Sep. 15, 2021, Academic Press.
L. H. Owen, “Crowdsourcing trusted news sources can work — but not the way Facebook says it'll do it.,” Nieman Lab, Nieman Foundation at Harvard University, Cambridge, available at
Iwendi, Mohan, khan, Ibeke, Ahmadian, Ciano (bib0041) Jul. 2022; 101
Kamble, Gunasekaran, Sharma (bib0010) Oct. 2018; 101
M. Lahby, S. Aqil, W. M. S. Yafooz, and Y. Abakarim, “Online fake news detection using machine learning techniques: a systematic mapping study,” 2022, pp. 3–37.
Rai, Kumar, Kaushik, Raj, Ali (bib0032) Jun. 2022; 3
Chi, Liao (bib0049) Apr. 2022; 242
Chauhan, Palivela (bib0004) Nov. 2021; 1
Schwab (bib0008) 2017
Jiang, Li, Haq, Saboor, Ali (bib0039) 2021; 9
Mahabub (bib0051) Apr. 2020; 2
Vosoughi, Roy, Aral (bib0030) 2018; 359
Alnabhan, Branco (bib0022) 2024; 12
Gôlo, de Souza, Rossi, Rezende, Nogueira, Marcacini (bib0019) Jun. 2023; 122
AosFatos, “Aos Fatos,”
Choudhary, Chouhan, Pilli, Vipparthi (bib0014) Oct. 2021; 110
Vosoughi, Roy, Aral (bib0013) 2018; 359
Tandoc, Lim, Ling (bib0001) Feb. 2018; 6
U. A. Ciftci, I. Demir, and L. Yin, “How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals,” Aug. 2020, [Online]. Available
Saleh, Alharbi, Alsamhi (bib0040) 2021; 9
Martin-Gutierrez, Hernandez-Penaloza, Hernandez, Lozano-Diez, Alvarez (bib0021) 2021; 9
Hassan, Gomaa, Khoriba, Haggag (bib0042) Feb. 2020; 13
Mahabub (bib0036) Apr. 2020; 2
Seyam, Bou Nassif, Abu Talib, Nasir, Al Blooshi (bib0025) Aug. 2021
B. Kitchenham and S. Charters, Guidelines for performing systematic literature reviews in software engineering. EBSE Technical Report EBSE: Technical report, 2007.
Arruda, Silva, Lessa, Proença, Bartholo (bib0028) Dec. 2022; 110
Kolluri, Murthy (bib0043) Mar. 2021; 22
Rai, Kumar, Kaushik, Raj, Ali (bib0045) Jun. 2022; 3
Dadkhah, Shoeleh, Yadollahi, Zhang, Ghorbani (bib0044) Jun. 2021; 104
Caneppele, Belintani Shigaki, Ramos, Ribeiro (bib0029) Sep. 2023; 22
Alnabhan (10.1016/j.datak.2025.102441_bib0022) 2024; 12
Sharma (10.1016/j.datak.2025.102441_bib0046) 2023; 14
van Eck (10.1016/j.datak.2025.102441_bib0027) 2010; 84
Rohman (10.1016/j.datak.2025.102441_bib0024) 2021
10.1016/j.datak.2025.102441_bib0048
Choraś (10.1016/j.datak.2025.102441_bib0018) 2021; 101
Dhawan (10.1016/j.datak.2025.102441_bib0035) 2022; 185
Horváth (10.1016/j.datak.2025.102441_bib0011) 2019; 146
Seyam (10.1016/j.datak.2025.102441_bib0025) 2021
Chi (10.1016/j.datak.2025.102441_bib0049) 2022; 242
Schwab (10.1016/j.datak.2025.102441_bib0008) 2017
Jiang (10.1016/j.datak.2025.102441_bib0039) 2021; 9
Sudhakar (10.1016/j.datak.2025.102441_bib0017) 2022; 24
Martin-Gutierrez (10.1016/j.datak.2025.102441_bib0021) 2021; 9
Dadkhah (10.1016/j.datak.2025.102441_bib0044) 2021; 104
Rai (10.1016/j.datak.2025.102441_bib0045) 2022; 3
Hassan (10.1016/j.datak.2025.102441_bib0052) 2020; 13
10.1016/j.datak.2025.102441_bib0054
10.1016/j.datak.2025.102441_bib0053
Ayoub (10.1016/j.datak.2025.102441_bib0047) 2021; 58
Mahabub (10.1016/j.datak.2025.102441_bib0051) 2020; 2
Sheikhi (10.1016/j.datak.2025.102441_bib0002) 2021; 109
Arruda (10.1016/j.datak.2025.102441_bib0028) 2022; 110
10.1016/j.datak.2025.102441_bib0007
10.1016/j.datak.2025.102441_bib0006
Vosoughi (10.1016/j.datak.2025.102441_bib0013) 2018; 359
Caneppele (10.1016/j.datak.2025.102441_bib0029) 2023; 22
Sivek (10.1016/j.datak.2025.102441_bib0012) 2018; 10
Opdahl (10.1016/j.datak.2025.102441_bib0050) 2023; 146
Kipper (10.1016/j.datak.2025.102441_bib0009) 2021; 64
Vosoughi (10.1016/j.datak.2025.102441_bib0030) 2018; 359
Rai (10.1016/j.datak.2025.102441_bib0032) 2022; 3
Choudhary (10.1016/j.datak.2025.102441_bib0014) 2021; 110
10.1016/j.datak.2025.102441_bib0023
Hua (10.1016/j.datak.2025.102441_bib0003) 2023; 136
10.1016/j.datak.2025.102441_bib0020
10.1016/j.datak.2025.102441_bib0026
Iwendi (10.1016/j.datak.2025.102441_bib0041) 2022; 101
Hassan (10.1016/j.datak.2025.102441_bib0042) 2020; 13
Ilias (10.1016/j.datak.2025.102441_bib0037) 2021; 107
Vosoughi (10.1016/j.datak.2025.102441_bib0005) 2018; 359
Qureshi (10.1016/j.datak.2025.102441_bib0038) 2022; 256
Kamble (10.1016/j.datak.2025.102441_bib0010) 2018; 101
Hua (10.1016/j.datak.2025.102441_bib0016) 2023; 136
Mahabub (10.1016/j.datak.2025.102441_bib0036) 2020; 2
Chauhan (10.1016/j.datak.2025.102441_bib0004) 2021; 1
Kolluri (10.1016/j.datak.2025.102441_bib0043) 2021; 22
10.1016/j.datak.2025.102441_bib0031
Tandoc (10.1016/j.datak.2025.102441_bib0001) 2018; 6
Saleh (10.1016/j.datak.2025.102441_bib0040) 2021; 9
Ayoub (10.1016/j.datak.2025.102441_bib0033) 2021; 58
Chi (10.1016/j.datak.2025.102441_bib0034) 2022; 242
Choudhary (10.1016/j.datak.2025.102441_bib0015) 2021; 110
Gôlo (10.1016/j.datak.2025.102441_bib0019) 2023; 122
References_xml – reference: Globo, “G1 Fato ou Fake,”
– volume: 104
  year: Jun. 2021
  ident: bib0044
  article-title: A real-time hostile activities analyses and detection system
  publication-title: Appl. Soft. Comput.
– reference: L. H. Owen, “Crowdsourcing trusted news sources can work — but not the way Facebook says it'll do it.,” Nieman Lab, Nieman Foundation at Harvard University, Cambridge, available at:
– volume: 3
  start-page: 98
  year: Jun. 2022
  end-page: 105
  ident: bib0032
  article-title: Fake news classification using transformer based enhanced LSTM and BERT
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 58
  year: Jul. 2021
  ident: bib0033
  article-title: Combat COVID-19 infodemic using explainable natural language processing models
  publication-title: Inf. Process Manag.
– volume: 136
  year: Mar. 2023
  ident: bib0016
  article-title: Multimodal fake news detection through data augmentation-based contrastive learning
  publication-title: Appl. Soft. Comput.
– volume: 3
  start-page: 98
  year: Jun. 2022
  end-page: 105
  ident: bib0045
  article-title: Fake news classification using transformer based enhanced LSTM and BERT
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 109
  year: Sep. 2021
  ident: bib0002
  article-title: An effective fake news detection method using WOA-xgbTree algorithm and content-based features
  publication-title: Appl. Soft. Comput.
– volume: 9
  start-page: 129471
  year: 2021
  end-page: 129489
  ident: bib0040
  article-title: OPCNN-FAKE: optimized convolutional neural network for fake news detection
  publication-title: IEEe Access.
– volume: 13
  start-page: 291
  year: Feb. 2020
  end-page: 300
  ident: bib0042
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Sys.
– volume: 13
  start-page: 291
  year: Feb. 2020
  end-page: 300
  ident: bib0052
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Sys.
– volume: 110
  start-page: 392
  year: Dec. 2022
  end-page: 395
  ident: bib0028
  article-title: VOSviewer and bibliometrix
  publication-title: J. Med. Libr. Assoc.
– reference: M. Lahby, S. Aqil, W. M. S. Yafooz, and Y. Abakarim, “Online fake news detection using machine learning techniques: a systematic mapping study,” 2022, pp. 3–37.
– reference: H. Kagermann, W. Wahlster, and J. Helbig, “Securing the future of german manufacturing industry: recommendations for implementing the strategic initiative industrie 4.0,” German, 2013.
– volume: 359
  start-page: 1146
  year: 2018
  end-page: 1151
  ident: bib0030
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– volume: 9
  start-page: 54591
  year: 2021
  end-page: 54601
  ident: bib0021
  article-title: A deep learning approach for robust detection of bots in twitter using transformers
  publication-title: IEEe Access.
– volume: 256
  year: Nov. 2022
  ident: bib0038
  article-title: Deception detection on social media: a source-based perspective
  publication-title: Knowl. Based. Syst.
– volume: 22
  start-page: e24970
  year: Sep. 2023
  ident: bib0029
  article-title: A utilização do software VOSviewer em Pesquisas Científicas
  publication-title: Revista Ibero-Americana de Estratégia
– volume: 107
  year: Aug. 2021
  ident: bib0037
  article-title: Detecting malicious activity in Twitter using deep learning techniques
  publication-title: Appl. Soft. Comput.
– reference: U. A. Ciftci, I. Demir, and L. Yin, “How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals,” Aug. 2020, [Online]. Available:
– volume: 101
  year: Jul. 2022
  ident: bib0041
  article-title: Covid-19 fake news sentiment analysis
  publication-title: Comput. Electr. Eng.
– volume: 101
  year: Mar. 2021
  ident: bib0018
  article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: a systematic mapping study
  publication-title: Appl. Soft. Comput.
– volume: 84
  start-page: 523
  year: Aug. 2010
  end-page: 538
  ident: bib0027
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics.
– volume: 24
  year: Dec. 2022
  ident: bib0017
  article-title: Effective prediction of fake news using two machine learning algorithms
  publication-title: Meas. Sens.
– reference: B. Kitchenham and S. Charters, Guidelines for performing systematic literature reviews in software engineering. EBSE Technical Report EBSE: Technical report, 2007.
– volume: 101
  start-page: 107
  year: Oct. 2018
  end-page: 119
  ident: bib0010
  article-title: Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry
  publication-title: Comput. Ind.
– start-page: 1
  year: Aug. 2021
  end-page: 5
  ident: bib0025
  article-title: Deep learning models to detect online false information: a systematic literature review
  publication-title: The 7th Annual International Conference on Arab Women in Computing in Conjunction with the 2nd Forum of Women in Research
– volume: 359
  start-page: 1146
  year: 2018
  end-page: 1151
  ident: bib0013
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– volume: 146
  year: Jul. 2023
  ident: bib0050
  article-title: Trustworthy journalism through AI
  publication-title: Data Knowl. Eng.
– volume: 359
  start-page: 1146
  year: 2018
  end-page: 1151
  ident: bib0005
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– volume: 10
  start-page: 123
  year: 2018
  end-page: 138
  ident: bib0012
  article-title: Both facts and feelings: emotion and news literacy
  publication-title: J. Media Lit. Educ.
– volume: 2
  year: Apr. 2020
  ident: bib0051
  article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers
  publication-title: SN. Appl. Sci.
– volume: 12
  start-page: 114435
  year: 2024
  end-page: 114459
  ident: bib0022
  article-title: Fake news detection using deep learning: a systematic literature review
  publication-title: IEEe Access.
– volume: 64
  year: 2021
  ident: bib0009
  article-title: Scientific mapping to identify competencies required by industry 4.0
  publication-title: Technol. Soc.
– volume: 136
  year: Mar. 2023
  ident: bib0003
  article-title: Multimodal fake news detection through data augmentation-based contrastive learning
  publication-title: Appl. Soft. Comput.
– volume: 22
  year: Mar. 2021
  ident: bib0043
  article-title: CoVerifi: a COVID-19 news verification system
  publication-title: Online Soc. Netw. Media
– volume: 9
  start-page: 22626
  year: 2021
  end-page: 22639
  ident: bib0039
  article-title: A novel stacking approach for accurate detection of fake news
  publication-title: IEEe Access.
– volume: 146
  start-page: 119
  year: Sep. 2019
  end-page: 132
  ident: bib0011
  article-title: Driving forces and barriers of Industry 4.0: do multinational and small and medium-sized companies have equal opportunities?
  publication-title: Technol. Forecast. Soc. Change
– volume: 185
  start-page: 130
  year: Mar. 2022
  end-page: 141
  ident: bib0035
  article-title: FakeNewsIndia: a benchmark dataset of fake news incidents in India, collection methodology and impact assessment in social media
  publication-title: Comput. Commun.
– volume: 6
  start-page: 137
  year: Feb. 2018
  end-page: 153
  ident: bib0001
  article-title: Defining ‘Fake News
  publication-title: Digit. Journalism
– volume: 242
  year: Apr. 2022
  ident: bib0049
  article-title: A quantitative argumentation-based automated eXplainable decision system for fake news detection on social media
  publication-title: Knowl. Based. Syst.
– volume: 1
  year: Nov. 2021
  ident: bib0004
  article-title: Optimization and improvement of fake news detection using deep learning approaches for societal benefit
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 14
  year: Oct. 2023
  ident: bib0046
  article-title: Exploratory data analysis and deception detection in news articles on social media using machine learning classifiers
  publication-title: Ain Shams Eng. J.
– volume: 58
  year: Jul. 2021
  ident: bib0047
  article-title: Combat COVID-19 infodemic using explainable natural language processing models
  publication-title: Inf. Process Manag.
– reference: CNI, “Challenges for industry 4.0 in Brazil,” Brasília, 2016.
– volume: 242
  year: Apr. 2022
  ident: bib0034
  article-title: A quantitative argumentation-based Automated eXplainable Decision System for fake news detection on social media
  publication-title: Knowl. Based. Syst.
– reference: T. Khan, A. Michalas, and A. Akhunzada, “Fake news outbreak 2021: can we stop the viral spread?,” Sep. 15, 2021, Academic Press.
– start-page: 1
  year: Sep. 2021
  end-page: 4
  ident: bib0024
  article-title: Systematic literature review on methods used in classification and fake news detection in indonesian
  publication-title: 2021 9th International Conference on Cyber and IT Service Management (CITSM)
– volume: 122
  year: Jun. 2023
  ident: bib0019
  article-title: One-class learning for fake news detection through multimodal variational autoencoders
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: bib0008
  article-title: The fourth industrial revolution
– reference: .
– volume: 110
  year: Oct. 2021
  ident: bib0014
  article-title: BerConvoNet: a deep learning framework for fake news classification
  publication-title: Appl. Soft. Comput.
– volume: 2
  year: Apr. 2020
  ident: bib0036
  article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers
  publication-title: SN. Appl. Sci.
– volume: 110
  year: Oct. 2021
  ident: bib0015
  article-title: BerConvoNet: a deep learning framework for fake news classification
  publication-title: Appl. Soft. Comput.
– reference: AosFatos, “Aos Fatos,”
– volume: 10
  start-page: 123
  issue: 2
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0012
  article-title: Both facts and feelings: emotion and news literacy
  publication-title: J. Media Lit. Educ.
  doi: 10.23860/JMLE-2018-10-2-7
– volume: 6
  start-page: 137
  issue: 2
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0001
  article-title: Defining ‘Fake News
  publication-title: Digit. Journalism
  doi: 10.1080/21670811.2017.1360143
– ident: 10.1016/j.datak.2025.102441_bib0023
  doi: 10.1007/978-3-030-90087-8_1
– volume: 110
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0015
  article-title: BerConvoNet: a deep learning framework for fake news classification
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107614
– volume: 242
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0034
  article-title: A quantitative argumentation-based Automated eXplainable Decision System for fake news detection on social media
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2022.108378
– volume: 101
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0018
  article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: a systematic mapping study
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.107050
– volume: 185
  start-page: 130
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0035
  article-title: FakeNewsIndia: a benchmark dataset of fake news incidents in India, collection methodology and impact assessment in social media
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.01.003
– volume: 136
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0003
  article-title: Multimodal fake news detection through data augmentation-based contrastive learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110125
– volume: 3
  start-page: 98
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0045
  article-title: Fake news classification using transformer based enhanced LSTM and BERT
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 84
  start-page: 523
  issue: 2
  year: 2010
  ident: 10.1016/j.datak.2025.102441_bib0027
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics.
  doi: 10.1007/s11192-009-0146-3
– volume: 13
  start-page: 291
  issue: 1
  year: 2020
  ident: 10.1016/j.datak.2025.102441_bib0052
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Sys.
– volume: 58
  issue: 4
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0033
  article-title: Combat COVID-19 infodemic using explainable natural language processing models
  publication-title: Inf. Process Manag.
  doi: 10.1016/j.ipm.2021.102569
– volume: 101
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0041
  article-title: Covid-19 fake news sentiment analysis
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107967
– volume: 256
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0038
  article-title: Deception detection on social media: a source-based perspective
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2022.109649
– ident: 10.1016/j.datak.2025.102441_bib0048
  doi: 10.1109/IJCB48548.2020.9304909
– ident: 10.1016/j.datak.2025.102441_bib0007
– start-page: 1
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0025
  article-title: Deep learning models to detect online false information: a systematic literature review
– volume: 3
  start-page: 98
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0032
  article-title: Fake news classification using transformer based enhanced LSTM and BERT
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 9
  start-page: 22626
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0039
  article-title: A novel stacking approach for accurate detection of fake news
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3056079
– volume: 359
  start-page: 1146
  issue: 6380
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0030
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– ident: 10.1016/j.datak.2025.102441_bib0020
  doi: 10.1016/j.jnca.2021.103112
– volume: 22
  start-page: e24970
  issue: 1
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0029
  article-title: A utilização do software VOSviewer em Pesquisas Científicas
  publication-title: Revista Ibero-Americana de Estratégia
  doi: 10.5585/2023.24970
– volume: 136
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0016
  article-title: Multimodal fake news detection through data augmentation-based contrastive learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110125
– ident: 10.1016/j.datak.2025.102441_bib0031
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0004
  article-title: Optimization and improvement of fake news detection using deep learning approaches for societal benefit
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 122
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0019
  article-title: One-class learning for fake news detection through multimodal variational autoencoders
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106088
– volume: 101
  start-page: 107
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0010
  article-title: Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.06.004
– volume: 146
  start-page: 119
  year: 2019
  ident: 10.1016/j.datak.2025.102441_bib0011
  article-title: Driving forces and barriers of Industry 4.0: do multinational and small and medium-sized companies have equal opportunities?
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2019.05.021
– volume: 13
  start-page: 291
  issue: 1
  year: 2020
  ident: 10.1016/j.datak.2025.102441_bib0042
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Sys.
– ident: 10.1016/j.datak.2025.102441_bib0006
– volume: 110
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0014
  article-title: BerConvoNet: a deep learning framework for fake news classification
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107614
– volume: 110
  start-page: 392
  issue: 3
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0028
  article-title: VOSviewer and bibliometrix
  publication-title: J. Med. Libr. Assoc.
  doi: 10.5195/jmla.2022.1434
– volume: 107
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0037
  article-title: Detecting malicious activity in Twitter using deep learning techniques
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107360
– volume: 64
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0009
  article-title: Scientific mapping to identify competencies required by industry 4.0
  publication-title: Technol. Soc.
  doi: 10.1016/j.techsoc.2020.101454
– year: 2017
  ident: 10.1016/j.datak.2025.102441_bib0008
– volume: 242
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0049
  article-title: A quantitative argumentation-based automated eXplainable decision system for fake news detection on social media
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2022.108378
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.datak.2025.102441_bib0051
  article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers
  publication-title: SN. Appl. Sci.
  doi: 10.1007/s42452-020-2326-y
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.datak.2025.102441_bib0036
  article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers
  publication-title: SN. Appl. Sci.
  doi: 10.1007/s42452-020-2326-y
– ident: 10.1016/j.datak.2025.102441_bib0053
– volume: 9
  start-page: 54591
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0021
  article-title: A deep learning approach for robust detection of bots in twitter using transformers
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3068659
– volume: 22
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0043
  article-title: CoVerifi: a COVID-19 news verification system
  publication-title: Online Soc. Netw. Media
– start-page: 1
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0024
  article-title: Systematic literature review on methods used in classification and fake news detection in indonesian
– volume: 58
  issue: 4
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0047
  article-title: Combat COVID-19 infodemic using explainable natural language processing models
  publication-title: Inf. Process Manag.
  doi: 10.1016/j.ipm.2021.102569
– volume: 146
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0050
  article-title: Trustworthy journalism through AI
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2023.102182
– volume: 12
  start-page: 114435
  year: 2024
  ident: 10.1016/j.datak.2025.102441_bib0022
  article-title: Fake news detection using deep learning: a systematic literature review
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2024.3435497
– volume: 359
  start-page: 1146
  issue: 6380
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0013
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– volume: 104
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0044
  article-title: A real-time hostile activities analyses and detection system
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107175
– volume: 359
  start-page: 1146
  issue: 6380
  year: 2018
  ident: 10.1016/j.datak.2025.102441_bib0005
  article-title: The spread of true and false news online
  publication-title: Science (1979)
– ident: 10.1016/j.datak.2025.102441_bib0026
– volume: 14
  issue: 10
  year: 2023
  ident: 10.1016/j.datak.2025.102441_bib0046
  article-title: Exploratory data analysis and deception detection in news articles on social media using machine learning classifiers
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102166
– volume: 109
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0002
  article-title: An effective fake news detection method using WOA-xgbTree algorithm and content-based features
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107559
– volume: 24
  year: 2022
  ident: 10.1016/j.datak.2025.102441_bib0017
  article-title: Effective prediction of fake news using two machine learning algorithms
  publication-title: Meas. Sens.
– volume: 9
  start-page: 129471
  year: 2021
  ident: 10.1016/j.datak.2025.102441_bib0040
  article-title: OPCNN-FAKE: optimized convolutional neural network for fake news detection
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3112806
– ident: 10.1016/j.datak.2025.102441_bib0054
SSID ssj0002405
Score 2.4275653
Snippet Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102441
SubjectTerms Artificial intelligence
Engineering
Machine learning
Neural network
Title Fake news detection algorithms – A systematic literature review
URI https://dx.doi.org/10.1016/j.datak.2025.102441
Volume 158
WOSCitedRecordID wos001455199100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0169-023X
  databaseCode: AIEXJ
  dateStart: 20220301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002405
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0169-023X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002405
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOPAqI8pIP3EJQkzhOfFzRLg-hqhIF7S1yHBvSLt4qSVHVE_-Bf8gvYfzIAxYhQOISrayNvZr5NPtlMvMNQk-iXLDdMsvCsopESJJYhYwwFWa0JFRRUSXSevpNdnCQL5fs0LcQtHacQKZ1fn7OTv-rq2ENnG1aZ__C3cOmsACfwelwBbfD9Y8cv-An0g4KDyrZST8JfPVh3dTdx09t0Fc3JBASJjLOq0Fe2XezTFnrHu-4xciQgQvkqGM4JrtXwWLdaNc4o7ntvR6ivungl50rHnjR8ItarnhwWAsAYj1Efc1l68oG3tfavsPfE_VZa9S49MU0QRGnQzGrz5ptdM64RCZlIfCF5Q-R2Km4b0R1l2A4Nkfwk2fmDKM4QZxi1k9y2W_NzmbjOLViO-wy2oqzlOUztDV_tb98PfxPA5dxBa7-l_SaVLb6b-OoX_OWCRc5uomu-4cIPHfOv4UuSb2NbvQDOrCP19vo2kRt8jaaG2Rggww8IAOPyMDfvnzFczxiAo-YwA4Td9C7xf7R85ehn6ARCgjVXchNzzojPBEVy-FZIOLAj1OuIl4qtZvKjFLL-ZTgihKRqExWURXzKidpXjGZ3EUzvdbyHsIRrDLge1kqOElEXCaEVZSoOKECvit20NPePsWpE0op-grC48KaszDmLJw5dxDtbVh4ruc4XAFO_92N9__1xgfo6ojOh2jWNWfyEboiPnd12zz24PgOevF5Gw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fake+news+detection+algorithms+%E2%80%93+A+systematic+literature+review&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Dal+Forno%2C+Ana+Julia&rft.au=Richetti%2C+Graziela+Piccoli&rft.au=Knaesel%2C+Vin%C3%ADcius+Heinz&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-023X&rft.volume=158&rft_id=info:doi/10.1016%2Fj.datak.2025.102441&rft.externalDocID=S0169023X25000369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon