Solving Time-Fractional reaction–diffusion systems through a tensor-based parallel algorithm

Machine Learning (ML) approach is a discussed research topic because of its benefit in several research fields. The most important issues in the training process of ML are accuracy and speed: a suitable mathematical model is critical and a fast data processing is mandatory. Fractional Calculus is in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physica A Ročník 611; s. 128472
Hlavní autori: Cardone, Angelamaria, De Luca, Pasquale, Galletti, Ardelio, Marcellino, Livia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2023
Predmet:
ISSN:0378-4371, 1873-2119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine Learning (ML) approach is a discussed research topic because of its benefit in several research fields. The most important issues in the training process of ML are accuracy and speed: a suitable mathematical model is critical and a fast data processing is mandatory. Fractional Calculus is involved in a large number of important applications and, recently, many ML algorithms, in order to improve accuracy of results when performing training in solving optimization problems, are based on decision and control performed by means of time-fractional models to better understand complex systems. However, the high computational cost, which characterizes the numerical solution, of this approach might be a problem for large scale Machine Learning systems. High Performance Computing (HPC) is the way of addressing the need of real time computation. In fact, through tensor-based parallel strategies designed for modern parallel architectures, Fractional Calculus tools are very helpful for the ML training step. In this contest, we consider a time-fractional diffusion system and, after introducing a suitable modification of a numerical model to solve it, we propose a related and novel parallel implementation on GPUs (Graphics Processing Units). Experiments show the gain of performance in terms of execution time and accuracy of our parallel implementation. •A Time-fractional reaction–diffusion system is considered, focusing attention on the Sylvester equation system arising of discretization process.•A new tensor-based equivalent form for the Sylvester problem formulation is proposed.•A parallel algorithm which use this new formulation to provide fast results, exploiting the advanced GPU environment, has been implemented.
AbstractList Machine Learning (ML) approach is a discussed research topic because of its benefit in several research fields. The most important issues in the training process of ML are accuracy and speed: a suitable mathematical model is critical and a fast data processing is mandatory. Fractional Calculus is involved in a large number of important applications and, recently, many ML algorithms, in order to improve accuracy of results when performing training in solving optimization problems, are based on decision and control performed by means of time-fractional models to better understand complex systems. However, the high computational cost, which characterizes the numerical solution, of this approach might be a problem for large scale Machine Learning systems. High Performance Computing (HPC) is the way of addressing the need of real time computation. In fact, through tensor-based parallel strategies designed for modern parallel architectures, Fractional Calculus tools are very helpful for the ML training step. In this contest, we consider a time-fractional diffusion system and, after introducing a suitable modification of a numerical model to solve it, we propose a related and novel parallel implementation on GPUs (Graphics Processing Units). Experiments show the gain of performance in terms of execution time and accuracy of our parallel implementation. •A Time-fractional reaction–diffusion system is considered, focusing attention on the Sylvester equation system arising of discretization process.•A new tensor-based equivalent form for the Sylvester problem formulation is proposed.•A parallel algorithm which use this new formulation to provide fast results, exploiting the advanced GPU environment, has been implemented.
ArticleNumber 128472
Author Galletti, Ardelio
Cardone, Angelamaria
Marcellino, Livia
De Luca, Pasquale
Author_xml – sequence: 1
  givenname: Angelamaria
  surname: Cardone
  fullname: Cardone, Angelamaria
  organization: Department of Mathematics, University of Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano (Salerno), Italy
– sequence: 2
  givenname: Pasquale
  orcidid: 0000-0001-7031-920X
  surname: De Luca
  fullname: De Luca, Pasquale
  email: pasquale.deluca@uniparthenope.it
  organization: Department of Science and Technologies , Parthenope University of Naples, Centro Direzionale C4, I-80143 Naples, Italy
– sequence: 3
  givenname: Ardelio
  surname: Galletti
  fullname: Galletti, Ardelio
  organization: Department of Science and Technologies , Parthenope University of Naples, Centro Direzionale C4, I-80143 Naples, Italy
– sequence: 4
  givenname: Livia
  surname: Marcellino
  fullname: Marcellino, Livia
  organization: Department of Science and Technologies , Parthenope University of Naples, Centro Direzionale C4, I-80143 Naples, Italy
BookMark eNp9kL1OwzAUhS1UJNrCE7D4BRJ87TROBgZUUUCqxEBZsRz_NK6SuLLTSt14B96QJyElzEz33OE7OvpmaNL5ziB0CyQFAvndLt3XpyhTSihLgRYZpxdoCgVnCQUoJ2hKGC-SjHG4QrMYd4QQ4IxO0cebb46u2-KNa02yClL1zneywcGM8fvzSztrD3HIOJ5ib9qI-zr4w7bGEvemiz4klYxG470MsmlMg2Wz9cH1dXuNLq1sorn5u3P0vnrcLJ-T9evTy_JhnSgoWJ-UOdhSkarUtKK0sjC8pVRQsoxYaoFamXMiLWjK88WCUyCVrCrKpSaaZ5bNERt7VfAxBmPFPrhWhpMAIs6KxE78KhJnRWJUNFD3I2WGaUdngojKmU4Z7YJRvdDe_cv_AHoXdZU
Cites_doi 10.1016/j.camwa.2012.02.042
10.1016/j.future.2020.06.027
10.1017/S0022112091002203
10.1016/j.apnum.2019.01.009
10.1016/j.camwa.2009.08.015
10.1515/fca-2016-0008
10.4208/cicp.020709.221209a
10.1145/361573.361582
10.3390/s21165395
10.1007/s00707-019-02474-z
10.1016/j.apnum.2017.02.004
10.1155/2014/820162
10.1016/j.jcp.2014.12.001
10.2478/s13540-012-0010-7
10.1016/j.cam.2015.08.012
10.1007/s13540-022-00059-7
10.1016/j.cnsns.2010.09.007
10.1016/j.jcp.2013.06.031
10.1016/0024-3795(92)90031-5
10.1016/j.mechmat.2013.09.017
10.1007/s11227-014-1123-z
10.1016/j.mechmat.2011.08.016
10.1016/j.jksus.2015.09.002
10.1155/2014/219580
10.1098/rsta.2020.0050
10.3390/math8040596
10.1515/jnma-2014-0016
10.1186/2193-1801-3-425
10.1137/130933216
10.1016/j.postharvbio.2020.111147
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2023.128472
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2023_128472
S0378437123000274
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c183t-961f9c0b9d2b22bf11f99ac19340f2f12fa670af1d276557210babb27ad0d74f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976269300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 07:14:17 EST 2025
Fri Feb 23 02:37:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel algorithm
Reaction–diffusion systems
65M70
65M06
Numerical methods
35R11
65Y05
Machine Learning
GPU computing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c183t-961f9c0b9d2b22bf11f99ac19340f2f12fa670af1d276557210babb27ad0d74f3
ORCID 0000-0001-7031-920X
ParticipantIDs crossref_primary_10_1016_j_physa_2023_128472
elsevier_sciencedirect_doi_10_1016_j_physa_2023_128472
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khader (b29) 2011; 16
Li, Xu (b30) 2010; 8
Sweilam, Moharram, Abdel Moniem, Ahmed (b25) 2014; 22
Montella, Ferraro, Kosta, Pelliccia, Giunta (b16) 2016
Failla, Zingales (b5) 2020; 378
Zayernouri, Karniadakis (b34) 2015; 293
D’Ambrosio, Paternoster (b36) 2016; 294
Cardone, Frasca-Caccia (b9) 2022; 25
Cardone, D’Ambrosio, Paternoster (b28) 2019; 139
Luchko (b19) 2012; 15
Cázares-Ramírez, Espinosa-Paredes (b2) 2016; 28
De Luca, Galletti, Ghehsareh, Marcellino, Raei (b15) 2019; vol. 36
Wu, Pan, Yang (b23) 2021; 40
Burrage, Cardone, D’Ambrosio, Paternoster (b1) 2017; 116
Cuomo, De Michele, Galletti, Marcellino (b14) 2016
Cuomo, Galletti, Giunta, Marcellino (b12) 2017; 10
Zhang, Cai (b27) 2016; 19
Romano, Lapegna, Mele, Laccetti (b11) 2020; 112
Mahiuddin, Godhani, Feng, Liu, Langrish, Karim (b8) 2020; 163
Podlubny (b17) 1999; vol. 198
Sugimoto (b31) 1991; 225
Jiang, Liu, Turner, Burrage (b3) 2012; 64
Bartels, Stewart (b37) 1972; 15
2022.
D’Ambrosio, Paternoster (b35) 2014; 3
Lapegna, Balzano, Meyer, Romano (b10) 2021; 21
Zayernouri, Karniadakis (b33) 2014; 36
Di Paola, Fiore, Pinnola, Valenza (b7) 2014; 69
Bohaienko, Bulavatsky, Gladky (b20) 2018
Gong, Bao, Tang, Jiang, Liu (b22) 2014; 2014
Liu, Gong, Bao, Tang, Jiang (b24) 2014; 2014
Luchko (b18) 2010; 59
Zayernouri, Karniadakis (b32) 2013; 252
De Luca, Formisano (b13) 2020
Yang, Wu (b26) 2020; 8
Hu, Reichel (b40) 1992; 172
Di Paola, Pirrotta, Valenza (b6) 2011; 43
Gong, Bao, Tang, Yang, Liu (b21) 2014; 68
Yang, Chen (b4) 2019; 230
Yang (10.1016/j.physa.2023.128472_b4) 2019; 230
Luchko (10.1016/j.physa.2023.128472_b19) 2012; 15
Zayernouri (10.1016/j.physa.2023.128472_b32) 2013; 252
Mahiuddin (10.1016/j.physa.2023.128472_b8) 2020; 163
Cardone (10.1016/j.physa.2023.128472_b9) 2022; 25
10.1016/j.physa.2023.128472_b41
10.1016/j.physa.2023.128472_b42
Gong (10.1016/j.physa.2023.128472_b22) 2014; 2014
Bartels (10.1016/j.physa.2023.128472_b37) 1972; 15
Cardone (10.1016/j.physa.2023.128472_b28) 2019; 139
D’Ambrosio (10.1016/j.physa.2023.128472_b35) 2014; 3
Luchko (10.1016/j.physa.2023.128472_b18) 2010; 59
Di Paola (10.1016/j.physa.2023.128472_b6) 2011; 43
Di Paola (10.1016/j.physa.2023.128472_b7) 2014; 69
Gong (10.1016/j.physa.2023.128472_b21) 2014; 68
Wu (10.1016/j.physa.2023.128472_b23) 2021; 40
Li (10.1016/j.physa.2023.128472_b30) 2010; 8
Hu (10.1016/j.physa.2023.128472_b40) 1992; 172
Montella (10.1016/j.physa.2023.128472_b16) 2016
Khader (10.1016/j.physa.2023.128472_b29) 2011; 16
Yang (10.1016/j.physa.2023.128472_b26) 2020; 8
Sugimoto (10.1016/j.physa.2023.128472_b31) 1991; 225
Cuomo (10.1016/j.physa.2023.128472_b12) 2017; 10
D’Ambrosio (10.1016/j.physa.2023.128472_b36) 2016; 294
Bohaienko (10.1016/j.physa.2023.128472_b20) 2018
Jiang (10.1016/j.physa.2023.128472_b3) 2012; 64
Failla (10.1016/j.physa.2023.128472_b5) 2020; 378
Sweilam (10.1016/j.physa.2023.128472_b25) 2014; 22
Cuomo (10.1016/j.physa.2023.128472_b14) 2016
Lapegna (10.1016/j.physa.2023.128472_b10) 2021; 21
Podlubny (10.1016/j.physa.2023.128472_b17) 1999; vol. 198
Zayernouri (10.1016/j.physa.2023.128472_b34) 2015; 293
Burrage (10.1016/j.physa.2023.128472_b1) 2017; 116
Cázares-Ramírez (10.1016/j.physa.2023.128472_b2) 2016; 28
De Luca (10.1016/j.physa.2023.128472_b13) 2020
De Luca (10.1016/j.physa.2023.128472_b15) 2019; vol. 36
Liu (10.1016/j.physa.2023.128472_b24) 2014; 2014
Zayernouri (10.1016/j.physa.2023.128472_b33) 2014; 36
Zhang (10.1016/j.physa.2023.128472_b27) 2016; 19
Romano (10.1016/j.physa.2023.128472_b11) 2020; 112
10.1016/j.physa.2023.128472_b38
10.1016/j.physa.2023.128472_b39
References_xml – volume: 25
  start-page: 1459
  year: 2022
  end-page: 1483
  ident: b9
  article-title: Numerical conservation laws of time fractional diffusion PDEs
  publication-title: Fract. Calc. Appl. Anal.
– volume: 69
  start-page: 63
  year: 2014
  end-page: 70
  ident: b7
  article-title: On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials
  publication-title: Mech. Mater.
– volume: 36
  start-page: A40
  year: 2014
  end-page: A62
  ident: b33
  article-title: Fractional spectral collocation method
  publication-title: SIAM J. Sci. Comput.
– volume: 64
  start-page: 3377
  year: 2012
  end-page: 3388
  ident: b3
  article-title: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
  publication-title: Comput. Math. Appl.
– volume: 28
  start-page: 21
  year: 2016
  end-page: 28
  ident: b2
  article-title: Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs
  publication-title: J. King Saud Univ. Sci.
– volume: 59
  start-page: 1766
  year: 2010
  end-page: 1772
  ident: b18
  article-title: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
  publication-title: Comput. Math. Appl.
– volume: 3
  start-page: 425
  year: 2014
  ident: b35
  article-title: Numerical solution of a diffusion problem by exponentially fitted finite difference methods
  publication-title: SpringerPlus
– reference: , 2022.
– volume: 43
  start-page: 799
  year: 2011
  end-page: 806
  ident: b6
  article-title: Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results
  publication-title: Mech. Mater.
– volume: vol. 198
  start-page: xxiv+340
  year: 1999
  ident: b17
  publication-title: Fractional Differential Equations
– volume: 40
  year: 2021
  ident: b23
  article-title: An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation
  publication-title: J. Comput. Appl. Math.
– volume: 252
  start-page: 495
  year: 2013
  end-page: 517
  ident: b32
  article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: 82
  year: 2017
  end-page: 94
  ident: b1
  article-title: Numerical solution of time fractional diffusion systems
  publication-title: Appl. Numer. Math.
– start-page: 12
  year: 2018
  end-page: 17
  ident: b20
  article-title: GPU algorithms for solving time-fractional diffusion equation with generalised Caputo derivative with respect to a function
  publication-title: Fifth International Conference “High Performance Computing”
– volume: 10
  start-page: 520
  year: 2017
  end-page: 540
  ident: b12
  article-title: Numerical effects of the gaussian recursive filters in solving linear systems in the 3dvar case study
  publication-title: Numer. Math.: Theory Methods Appl.
– volume: 225
  start-page: 631
  year: 1991
  end-page: 653
  ident: b31
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
– volume: 8
  start-page: 1016
  year: 2010
  end-page: 1051
  ident: b30
  article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– volume: 378
  year: 2020
  ident: b5
  article-title: Advanced materials modelling via fractional calculus: Challenges and perspectives
  publication-title: Phil. Trans. R. Soc. A
– volume: 163
  year: 2020
  ident: b8
  article-title: Application of Caputo fractional rheological model to determine the viscoelastic and mechanical properties of fruit and vegetables
  publication-title: Postharvest Biol. Technol.
– start-page: 118
  year: 2016
  end-page: 125
  ident: b16
  article-title: Enabling android-based devices to high-end gpgpus
  publication-title: International Conference on Algorithms and Architectures for Parallel Processing
– volume: 139
  start-page: 115
  year: 2019
  end-page: 119
  ident: b28
  article-title: A spectral method for stochastic fractional differential equations
  publication-title: Appl. Numer. Math.
– volume: 68
  start-page: 1521
  year: 2014
  end-page: 1537
  ident: b21
  article-title: An efficient parallel solution for Caputo fractional reaction-diffusion equation
  publication-title: J. Supercomput.
– volume: 8
  year: 2020
  ident: b26
  article-title: A new kind of parallel natural difference method for multi-term time fractional diffusion model
  publication-title: Mathematics
– volume: 172
  start-page: 283
  year: 1992
  end-page: 313
  ident: b40
  article-title: Krylov-subspace methods for the Sylvester equation
  publication-title: Linear Algebra Appl.
– volume: 2014
  year: 2014
  ident: b22
  article-title: A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method
  publication-title: Sci. World J.
– volume: 112
  start-page: 695
  year: 2020
  end-page: 708
  ident: b11
  article-title: Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation
  publication-title: Future Gener. Comput. Syst.
– volume: 15
  start-page: 820
  year: 1972
  end-page: 826
  ident: b37
  article-title: Solution of the matrix equation
  publication-title: Commun. ACM
– volume: 293
  start-page: 312
  year: 2015
  end-page: 338
  ident: b34
  article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
  publication-title: J. Comput. Phys.
– volume: 21
  year: 2021
  ident: b10
  article-title: Clustering algorithms on low-power and high-performance devices for edge computing environments
  publication-title: Sensors
– volume: vol. 36
  start-page: 311
  year: 2019
  end-page: 320
  ident: b15
  article-title: A GPU-CUDA framework for solving a two-dimensional inverse anomalous diffusion problem
  publication-title: Parallel Computing: Technology Trends, Proceedings of the International Conference on Parallel Computing
– volume: 22
  start-page: 363
  year: 2014
  end-page: 382
  ident: b25
  article-title: A parallel Crank–Nicolson finite difference method for time-fractional parabolic equation
  publication-title: J. Numer. Math.
– volume: 16
  start-page: 2535
  year: 2011
  end-page: 2542
  ident: b29
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 15
  start-page: 141
  year: 2012
  end-page: 160
  ident: b19
  article-title: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
  publication-title: Fract. Calc. Appl. Anal.
– start-page: 35
  year: 2016
  end-page: 39
  ident: b14
  article-title: A GPU-parallel algorithm for ECG signal denoising based on the NLM method
  publication-title: 2016 30th International Conference on Advanced Information Networking and Applications Workshops
– volume: 230
  start-page: 3723
  year: 2019
  end-page: 3740
  ident: b4
  article-title: Fractional single-phase lag heat conduction and transient thermal fracture in cracked viscoelastic materials
  publication-title: Acta Mech.
– volume: 294
  start-page: 436
  year: 2016
  end-page: 445
  ident: b36
  article-title: Numerical solution of reaction–diffusion systems of
  publication-title: J. Comput. Appl. Math.
– start-page: 110
  year: 2020
  end-page: 121
  ident: b13
  article-title: Haptic data accelerated prediction via multicore implementation
  publication-title: Science and Information Conference
– volume: 19
  start-page: 140
  year: 2016
  end-page: 160
  ident: b27
  article-title: Solving 3D time-fractional diffusion equations by high-performance parallel computing
  publication-title: Fract. Calc. Appl. Anal.
– volume: 2014
  year: 2014
  ident: b24
  article-title: Solving the Caputo fractional reaction-diffusion equation on GPU
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 64
  start-page: 3377
  issue: 10
  year: 2012
  ident: 10.1016/j.physa.2023.128472_b3
  article-title: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.02.042
– volume: 112
  start-page: 695
  year: 2020
  ident: 10.1016/j.physa.2023.128472_b11
  article-title: Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.06.027
– volume: 225
  start-page: 631
  year: 1991
  ident: 10.1016/j.physa.2023.128472_b31
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091002203
– start-page: 110
  year: 2020
  ident: 10.1016/j.physa.2023.128472_b13
  article-title: Haptic data accelerated prediction via multicore implementation
– volume: 139
  start-page: 115
  year: 2019
  ident: 10.1016/j.physa.2023.128472_b28
  article-title: A spectral method for stochastic fractional differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.01.009
– volume: 59
  start-page: 1766
  issue: 5
  year: 2010
  ident: 10.1016/j.physa.2023.128472_b18
  article-title: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.015
– ident: 10.1016/j.physa.2023.128472_b41
– volume: 19
  start-page: 140
  issue: 1
  year: 2016
  ident: 10.1016/j.physa.2023.128472_b27
  article-title: Solving 3D time-fractional diffusion equations by high-performance parallel computing
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0008
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  ident: 10.1016/j.physa.2023.128472_b30
  article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.020709.221209a
– volume: 15
  start-page: 820
  issue: 9
  year: 1972
  ident: 10.1016/j.physa.2023.128472_b37
  article-title: Solution of the matrix equation AX+XB=C [F4]
  publication-title: Commun. ACM
  doi: 10.1145/361573.361582
– volume: 21
  issue: 16
  year: 2021
  ident: 10.1016/j.physa.2023.128472_b10
  article-title: Clustering algorithms on low-power and high-performance devices for edge computing environments
  publication-title: Sensors
  doi: 10.3390/s21165395
– volume: vol. 198
  start-page: xxiv+340
  year: 1999
  ident: 10.1016/j.physa.2023.128472_b17
– ident: 10.1016/j.physa.2023.128472_b38
– start-page: 12
  year: 2018
  ident: 10.1016/j.physa.2023.128472_b20
  article-title: GPU algorithms for solving time-fractional diffusion equation with generalised Caputo derivative with respect to a function
– volume: 230
  start-page: 3723
  issue: 10
  year: 2019
  ident: 10.1016/j.physa.2023.128472_b4
  article-title: Fractional single-phase lag heat conduction and transient thermal fracture in cracked viscoelastic materials
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02474-z
– volume: 40
  issue: 2
  year: 2021
  ident: 10.1016/j.physa.2023.128472_b23
  article-title: An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation
  publication-title: J. Comput. Appl. Math.
– volume: 116
  start-page: 82
  year: 2017
  ident: 10.1016/j.physa.2023.128472_b1
  article-title: Numerical solution of time fractional diffusion systems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.02.004
– volume: 2014
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b24
  article-title: Solving the Caputo fractional reaction-diffusion equation on GPU
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2014/820162
– volume: 293
  start-page: 312
  year: 2015
  ident: 10.1016/j.physa.2023.128472_b34
  article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.001
– volume: 10
  start-page: 520
  issue: 3
  year: 2017
  ident: 10.1016/j.physa.2023.128472_b12
  article-title: Numerical effects of the gaussian recursive filters in solving linear systems in the 3dvar case study
  publication-title: Numer. Math.: Theory Methods Appl.
– volume: 15
  start-page: 141
  issue: 1
  year: 2012
  ident: 10.1016/j.physa.2023.128472_b19
  article-title: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-012-0010-7
– volume: 294
  start-page: 436
  year: 2016
  ident: 10.1016/j.physa.2023.128472_b36
  article-title: Numerical solution of reaction–diffusion systems of λ–ω type by trigonometrically fitted methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.08.012
– volume: 25
  start-page: 1459
  issue: 4
  year: 2022
  ident: 10.1016/j.physa.2023.128472_b9
  article-title: Numerical conservation laws of time fractional diffusion PDEs
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1007/s13540-022-00059-7
– volume: 16
  start-page: 2535
  issue: 6
  year: 2011
  ident: 10.1016/j.physa.2023.128472_b29
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.09.007
– volume: 252
  start-page: 495
  year: 2013
  ident: 10.1016/j.physa.2023.128472_b32
  article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.031
– volume: 172
  start-page: 283
  year: 1992
  ident: 10.1016/j.physa.2023.128472_b40
  article-title: Krylov-subspace methods for the Sylvester equation
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90031-5
– volume: 69
  start-page: 63
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b7
  article-title: On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2013.09.017
– start-page: 118
  year: 2016
  ident: 10.1016/j.physa.2023.128472_b16
  article-title: Enabling android-based devices to high-end gpgpus
– volume: 68
  start-page: 1521
  issue: 3
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b21
  article-title: An efficient parallel solution for Caputo fractional reaction-diffusion equation
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-014-1123-z
– ident: 10.1016/j.physa.2023.128472_b42
– volume: 43
  start-page: 799
  issue: 12
  year: 2011
  ident: 10.1016/j.physa.2023.128472_b6
  article-title: Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2011.08.016
– volume: 28
  start-page: 21
  issue: 1
  year: 2016
  ident: 10.1016/j.physa.2023.128472_b2
  article-title: Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2015.09.002
– start-page: 35
  year: 2016
  ident: 10.1016/j.physa.2023.128472_b14
  article-title: A GPU-parallel algorithm for ECG signal denoising based on the NLM method
– volume: vol. 36
  start-page: 311
  year: 2019
  ident: 10.1016/j.physa.2023.128472_b15
  article-title: A GPU-CUDA framework for solving a two-dimensional inverse anomalous diffusion problem
– volume: 2014
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b22
  article-title: A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method
  publication-title: Sci. World J.
  doi: 10.1155/2014/219580
– volume: 378
  issue: 2172
  year: 2020
  ident: 10.1016/j.physa.2023.128472_b5
  article-title: Advanced materials modelling via fractional calculus: Challenges and perspectives
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0050
– volume: 8
  issue: 4
  year: 2020
  ident: 10.1016/j.physa.2023.128472_b26
  article-title: A new kind of parallel natural difference method for multi-term time fractional diffusion model
  publication-title: Mathematics
  doi: 10.3390/math8040596
– volume: 22
  start-page: 363
  issue: 4
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b25
  article-title: A parallel Crank–Nicolson finite difference method for time-fractional parabolic equation
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2014-0016
– volume: 3
  start-page: 425
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b35
  article-title: Numerical solution of a diffusion problem by exponentially fitted finite difference methods
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-3-425
– ident: 10.1016/j.physa.2023.128472_b39
– volume: 36
  start-page: A40
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2023.128472_b33
  article-title: Fractional spectral collocation method
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130933216
– volume: 163
  year: 2020
  ident: 10.1016/j.physa.2023.128472_b8
  article-title: Application of Caputo fractional rheological model to determine the viscoelastic and mechanical properties of fruit and vegetables
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111147
SSID ssj0001732
Score 2.4044385
Snippet Machine Learning (ML) approach is a discussed research topic because of its benefit in several research fields. The most important issues in the training...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128472
SubjectTerms GPU computing
Machine Learning
Numerical methods
Parallel algorithm
Reaction–diffusion systems
Title Solving Time-Fractional reaction–diffusion systems through a tensor-based parallel algorithm
URI https://dx.doi.org/10.1016/j.physa.2023.128472
Volume 611
WOSCitedRecordID wos000976269300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0Eq9VPQl6APtobd0kb3eeO1jhKBQRQipVMqp1j68bZBJkONEHDnxB_oP-0s66911UopQOfRiOZYztjyfZ2bH38wg9EErrg2srAh484wwpiICywhDylgwaqiSrGynloz4yUk2Huenvd5NqIVZVnw6za6u8sv_qmo4Bsq2pbMPUHcnFA7APigdtqB22P6T4r_MqjZJYIs7yGHtChfa9v1uN9AbEjsbZWGTZb6d87wb2iP6ltc-q4n1cbpv24NXVWm5zN9n9aT5cbEe0p46Ta-SovsAuplPlFrKrLgQjsvsIuayP1oo4aLXua3p7KD1yV6lcfyCYa3LynHEfLcD-4lh0g4K748mSy_Q5ytoEijOnVlLYN3KEjd4Jdjg1FtcZ0Vbn0nvNPAu13C-Z_M-tm0UTfZWZ__ZTvuWm-vIh4HXdl60QgorpHBCHqFNygc5GPjN4fHB-HPn02OeuO9R_t5D_6qWKfjXvdwd46zFLWdb6JlfcOChA8pz1CunL9ATp7T5S_TNwwXfggsOcPl1_bMDCvZAwR4oWOB1oOAAFNwB5RX6enhwtn9E_MwNosC4NyRPY5OrSOaaSkqlieFnLhSE-fAGUxNTI1IeCRNrytPBgNM4kkJKyoWONGcmeY02poCxbYTjkmVSCqYgAmfw5meCcpbTTAs7w6CkO-hjeErFpWutUtyjmx2UhidZ-OjQRX0FYOO-P7552HXeoqcr2L5DG029KN-jx2rZTOb1rgfGbx5Eigg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Time-Fractional+reaction%E2%80%93diffusion+systems+through+a+tensor-based+parallel+algorithm&rft.jtitle=Physica+A&rft.au=Cardone%2C+Angelamaria&rft.au=De+Luca%2C+Pasquale&rft.au=Galletti%2C+Ardelio&rft.au=Marcellino%2C+Livia&rft.date=2023-02-01&rft.issn=0378-4371&rft.volume=611&rft.spage=128472&rft_id=info:doi/10.1016%2Fj.physa.2023.128472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2023_128472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon