More on ideal limit points

In this paper we continue the study of ideal limit points. We introduce a new combinatorial property of ideals called weakly P+, and investigate the relation between P+, weakly P+ and the complexity of ideal limit points. Moreover, we clarify the relation between ideal limit points, ideal cluster po...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Topology and its applications Ročník 322; s. 108324
Hlavní autoři: He, Xi, Zhang, Hang, Zhang, Shuguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Témata:
ISSN:0166-8641
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we continue the study of ideal limit points. We introduce a new combinatorial property of ideals called weakly P+, and investigate the relation between P+, weakly P+ and the complexity of ideal limit points. Moreover, we clarify the relation between ideal limit points, ideal cluster points and ordinary ideal limit points. Finally, we investigate the projective hierarchy of ideal limit points.
AbstractList In this paper we continue the study of ideal limit points. We introduce a new combinatorial property of ideals called weakly P+, and investigate the relation between P+, weakly P+ and the complexity of ideal limit points. Moreover, we clarify the relation between ideal limit points, ideal cluster points and ordinary ideal limit points. Finally, we investigate the projective hierarchy of ideal limit points.
ArticleNumber 108324
Author Zhang, Shuguo
He, Xi
Zhang, Hang
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0002-8073-8923
  surname: He
  fullname: He, Xi
  email: hexi@nsu.edu.cn, 342015258@qq.com
  organization: School of Mathematics and Science, Nanyang Institute of Technology, No.80 Changjiang Road, Nanyang, 473004, China
– sequence: 2
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  email: zhanghangzh@sina.com, hzhangzh@gmail.com
  organization: School of Mathematics, Southwest Jiaotong University, Xipu Campus, West Park of Hi-Tech Zone, Chengdu, 610756, China
– sequence: 3
  givenname: Shuguo
  surname: Zhang
  fullname: Zhang, Shuguo
  email: zhangsg@scu.edu.cn
  organization: College of Mathematics, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
BookMark eNp9j81KxDAUhbMYwZnRF9BNX6A1f71NFy5k8A9G3Og6tMkNpHSakgTBt7djXbu6cC7f4Xw7spnChITcMloxyuBuqHKYw1hxyvmSKMHlhmyXD5QKJLsku5QGSilrG74lN28hYhGmwlvsxmL0J5-LOfgppyty4box4fXf3ZPPp8ePw0t5fH9-PTwcS8OUyKUEaKWpBThVG1A9KNmJHvvetUa1ppHWMasMQOMaZoUCZ1HKGluKXc8lE3si1l4TQ0oRnZ6jP3XxWzOqz0p60L9K-qykV6WFul8pXKZ9eYw6GY-TQesjmqxt8P_yP8LXWGk
Cites_doi 10.1016/j.topol.2018.11.022
10.1016/j.topol.2022.108061
10.1090/S0002-9939-1993-1181163-6
10.1016/j.topol.2012.04.007
10.2307/44154069
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.topol.2022.108324
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_topol_2022_108324
S0166864122003261
GrantInformation_xml – fundername: NSFC
  grantid: 11771311; 11801386
  funderid: https://doi.org/10.13039/501100001809
– fundername: NSFC
  grantid: 11601443; 11426188
  funderid: https://doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2682016CX111
  funderid: https://doi.org/10.13039/501100012226
– fundername: NSFC
  grantid: 11771311
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AACTN
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPCBC
T5K
TN5
WH7
~G-
186
29Q
5VS
9DU
AAEDT
AAQXK
AAYWO
AAYXX
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
H~9
NHB
R2-
SEW
SPC
SSW
SSZ
WUQ
ZKB
~HD
ID FETCH-LOGICAL-c183t-46694c536f85c68b684a3bebbf9c89c74df1d8c667f71d386fde445e90eab2413
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881767800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-8641
IngestDate Sat Nov 29 01:53:01 EST 2025
Sun Apr 06 06:54:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords secondary
P
Ideal cluster points
Ideal limit points
Weakly P
primary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c183t-46694c536f85c68b684a3bebbf9c89c74df1d8c667f71d386fde445e90eab2413
ORCID 0000-0002-8073-8923
ParticipantIDs crossref_primary_10_1016_j_topol_2022_108324
elsevier_sciencedirect_doi_10_1016_j_topol_2022_108324
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Topology and its applications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Balcerzak, Leonetti (br0010) 2019; 252
Das (br0030) 2012; 159
Kechris (br0070) 2012; vol. 156
Kostyrko, Šalát, Wilczyński (br0080) 2000; 26
He, Zhang, Zhang (br0050) 2022; 312
Jech (br0060) 2003; vol. 14
Fridy (br0040) 1993; 118
Bartoszynski, Judah (br0020) 1995
Balcerzak (10.1016/j.topol.2022.108324_br0010) 2019; 252
Jech (10.1016/j.topol.2022.108324_br0060) 2003; vol. 14
Bartoszynski (10.1016/j.topol.2022.108324_br0020) 1995
Kechris (10.1016/j.topol.2022.108324_br0070) 2012; vol. 156
Fridy (10.1016/j.topol.2022.108324_br0040) 1993; 118
Das (10.1016/j.topol.2022.108324_br0030) 2012; 159
He (10.1016/j.topol.2022.108324_br0050) 2022; 312
Kostyrko (10.1016/j.topol.2022.108324_br0080) 2000; 26
References_xml – volume: 159
  start-page: 2621
  year: 2012
  end-page: 2626
  ident: br0030
  article-title: Some further results on ideal convergence in topological spaces
  publication-title: Topol. Appl.
– volume: 312
  year: 2022
  ident: br0050
  article-title: The Borel complexity of ideal limit points
  publication-title: Topol. Appl.
– volume: 26
  start-page: 669
  year: 2000
  end-page: 685
  ident: br0080
  article-title: -convergence
  publication-title: Real Anal. Exch.
– year: 1995
  ident: br0020
  article-title: Set Theory: on the Structure of the Real Line
– volume: vol. 156
  year: 2012
  ident: br0070
  article-title: Classical Descriptive Set Theory
– volume: 118
  start-page: 1187
  year: 1993
  end-page: 1192
  ident: br0040
  article-title: Statistical limit points
  publication-title: Proc. Am. Math. Soc.
– volume: vol. 14
  year: 2003
  ident: br0060
  article-title: Set Theory
– volume: 252
  start-page: 178
  year: 2019
  end-page: 190
  ident: br0010
  article-title: On the relationship between ideal cluster points and ideal limit points
  publication-title: Topol. Appl.
– volume: 252
  start-page: 178
  year: 2019
  ident: 10.1016/j.topol.2022.108324_br0010
  article-title: On the relationship between ideal cluster points and ideal limit points
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2018.11.022
– volume: 312
  year: 2022
  ident: 10.1016/j.topol.2022.108324_br0050
  article-title: The Borel complexity of ideal limit points
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2022.108061
– volume: 118
  start-page: 1187
  issue: 4
  year: 1993
  ident: 10.1016/j.topol.2022.108324_br0040
  article-title: Statistical limit points
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1993-1181163-6
– year: 1995
  ident: 10.1016/j.topol.2022.108324_br0020
– volume: 159
  start-page: 2621
  issue: 10–11
  year: 2012
  ident: 10.1016/j.topol.2022.108324_br0030
  article-title: Some further results on ideal convergence in topological spaces
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2012.04.007
– volume: 26
  start-page: 669
  issue: 2
  year: 2000
  ident: 10.1016/j.topol.2022.108324_br0080
  article-title: I-convergence
  publication-title: Real Anal. Exch.
  doi: 10.2307/44154069
– volume: vol. 156
  year: 2012
  ident: 10.1016/j.topol.2022.108324_br0070
– volume: vol. 14
  year: 2003
  ident: 10.1016/j.topol.2022.108324_br0060
SSID ssj0001972
Score 2.2867734
Snippet In this paper we continue the study of ideal limit points. We introduce a new combinatorial property of ideals called weakly P+, and investigate the relation...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108324
SubjectTerms formula omitted
Ideal cluster points
Ideal limit points
Weakly [formula omitted]
Title More on ideal limit points
URI https://dx.doi.org/10.1016/j.topol.2022.108324
Volume 322
WOSCitedRecordID wos000881767800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-8641
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001972
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-yedCD-ImbH_TgTTu2JE3T45DJFDcEJ-xWmjTVDWnH1sn8781r2m1uIip4CSWQpMkvJC_v4_cQuqB1oW91iu2QEGJTQbAdUKdhM4hadCK9CYKMxPXe7XZ5v-895BlDJ1k6ATeO-Wzmjf4Val2nwYbQ2V_APe9UV-hvDbouNey6_BHwnWSswAQwCIEz-BUCmC5HySCnbCoE0Z5JjvA-Nx4sW7IXClJAoD9Y0y63g_zC-6Ryfpk-T5NlNQLGKy4Z6_EtRt3ImM2ZoaYqzktiAonXzl6jBhjWUphADcYAB0ZiQqRXSK0foWfoGINzHIb3axm7jsdLqNy8bfXv5rcppEUz_OzmTwrmqMxHb22or6WLJYmht4t2clHfahqI9tCGivfRdmfOkzs5QFUAy0piKwPLysCyDFiH6Omm1btu23m2ClvqYzG1KWMelQ5hEXck44JxGhChhIg8yT3p0jBqhFwy5kZuIyScRaGi1FFeXQUCrJtHqBQnsTpGln5FckyikAG_HFY0aISCKl0hJdHPU1FBV8Us_ZEhJfELb72hny2KD4vim0WpIFashJ_LVUZe8jV03zWs_rXhCdpa7LFTVErHU3WGNuVbOpiMz3OIPwBq90NQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+on+ideal+limit+points&rft.jtitle=Topology+and+its+applications&rft.au=He%2C+Xi&rft.au=Zhang%2C+Hang&rft.au=Zhang%2C+Shuguo&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0166-8641&rft.volume=322&rft_id=info:doi/10.1016%2Fj.topol.2022.108324&rft.externalDocID=S0166864122003261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-8641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-8641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-8641&client=summon