A -Cut and Goal-Programming-Based Algorithm for Fuzzy-Linear Multiple-Objective Bilevel Optimization

Bilevel-programming techniques are developed to handle decentralized problems with two-level decision makers, which are leaders and followers, who may have more than one objective to achieve. This paper proposes a λ-cut and goal-programming-based algorithm to solve fuzzy-linear multiple-objective bi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 18; no. 1; pp. 1 - 13
Main Authors: Gao, Ya, Zhang, Guangquan, Ma, Jun, Lu, Jie
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bilevel-programming techniques are developed to handle decentralized problems with two-level decision makers, which are leaders and followers, who may have more than one objective to achieve. This paper proposes a λ-cut and goal-programming-based algorithm to solve fuzzy-linear multiple-objective bilevel (FLMOB) decision problems. First, based on the definition of a distance measure between two fuzzy vectors using λ-cut, a fuzzy-linear bilevel goal (FLBG) model is formatted, and related theorems are proved. Then, using a λ-cut for fuzzy coefficients and a goal-programming strategy for multiple objectives, a λ-cut and goal-programming-based algorithm to solve FLMOB decision problems is presented. A case study for a newsboy problem is adopted to illustrate the application and executing procedure of this algorithm. Finally, experiments are carried out to discuss and analyze the performance of this algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2009.2030329