Parallel multigrid technique: Reduction to independent problems

The unsatisfactory operation of a parallel multigrid algorithm is caused by two reasons: the imbalanced load of processors and the intensive exchanges of data between them. The further development of the parallel universal multigrid technique based on the reduction of a difference initial boundary v...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical models and computer simulations Ročník 9; číslo 1; s. 120 - 126
Hlavní autoři: Martynenko, S. I., Volokhov, V. M., Yanovskiy, L. S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2017
Springer Nature B.V
Témata:
ISSN:2070-0482, 2070-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The unsatisfactory operation of a parallel multigrid algorithm is caused by two reasons: the imbalanced load of processors and the intensive exchanges of data between them. The further development of the parallel universal multigrid technique based on the reduction of a difference initial boundary value problem to a set of independent problems is considered. The universal multigrid technique is a single-grid algorithm, which uses the fundamental multigrid principle to minimize the number of problem-dependent components. The use of the same grid for the calculation of a correction eliminates all the difficulties produced by imbalanced loads and intensive exchanges on coarse grids. It has been shown that it is possible to decrease the volume of stored data and the time of computation and to attain nearly absolute parallelism in some cases. The results of some computational experiments with the difference six-order approximation pattern are presented.
AbstractList The unsatisfactory operation of a parallel multigrid algorithm is caused by two reasons: the imbalanced load of processors and the intensive exchanges of data between them. The further development of the parallel universal multigrid technique based on the reduction of a difference initial boundary value problem to a set of independent problems is considered. The universal multigrid technique is a single-grid algorithm, which uses the fundamental multigrid principle to minimize the number of problem-dependent components. The use of the same grid for the calculation of a correction eliminates all the difficulties produced by imbalanced loads and intensive exchanges on coarse grids. It has been shown that it is possible to decrease the volume of stored data and the time of computation and to attain nearly absolute parallelism in some cases. The results of some computational experiments with the difference six-order approximation pattern are presented.
Author Martynenko, S. I.
Yanovskiy, L. S.
Volokhov, V. M.
Author_xml – sequence: 1
  givenname: S. I.
  surname: Martynenko
  fullname: Martynenko, S. I.
  organization: Institute of Problems of Chemical Physics, Russian Academy of Sciences
– sequence: 2
  givenname: V. M.
  surname: Volokhov
  fullname: Volokhov, V. M.
  email: vvm@icp.ac.ru
  organization: Institute of Problems of Chemical Physics, Russian Academy of Sciences
– sequence: 3
  givenname: L. S.
  surname: Yanovskiy
  fullname: Yanovskiy, L. S.
  organization: Institute of Problems of Chemical Physics, Russian Academy of Sciences
BookMark eNp1UE1LxDAQDbKC67o_wFvBc3UmaUniRWTxCxYUP84lTSdrl266Ju3Bf2-WFRHEGZgZhvfmDe-YTXzvibFThHNEUVy8cJAAheIoAVPCAZvuVjkUGiY_s-JHbB7jGlIILpVQU3b1ZILpOuqyzdgN7Sq0TTaQffftx0iX2TM1ox3a3mdDn7W-oS2l4odsG_q6o008YYfOdJHm333G3m5vXhf3-fLx7mFxvcwtKgG5402NvMRGyloQWF4aTQ232mgJpdIGlUNla0oPa2ProhTOgHSWuFMoUczY2f5uEk6fxaFa92PwSbJCpUBKrSQkFO5RNvQxBnLVNrQbEz4rhGpnVfXHqsThe05MWL-i8Ovyv6Qv23trbA
Cites_doi 10.1016/0041-5553(66)90118-2
10.1016/0041-5553(64)90253-8
10.1134/S2070048210020109
10.1016/0041-5553(62)90031-9
10.2478/cmam-2010-0004
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Pleiades Publishing, Ltd. 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1134/S2070048217010100
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2070-0490
EndPage 126
ExternalDocumentID 10_1134_S2070048217010100
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
29M
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
40E
6NX
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
BA0
BAPOH
BGNMA
CAG
COF
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
JQ2
ID FETCH-LOGICAL-c1830-f2db1251d77b3e0c25a9ed2c9a970589a18f18cbe4909acb453fa07fce2f81713
IEDL.DBID RSV
ISSN 2070-0482
IngestDate Thu Sep 25 00:47:15 EDT 2025
Sat Nov 29 05:51:36 EST 2025
Fri Feb 21 02:35:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords parallel algorithms
geometric multigrid methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1830-f2db1251d77b3e0c25a9ed2c9a970589a18f18cbe4909acb453fa07fce2f81713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880779870
PQPubID 2044391
PageCount 7
ParticipantIDs proquest_journals_1880779870
crossref_primary_10_1134_S2070048217010100
springer_journals_10_1134_S2070048217010100
PublicationCentury 2000
PublicationDate 20170100
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Mathematical models and computer simulations
PublicationTitleAbbrev Math Models Comput Simul
PublicationYear 2017
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Baker, Graves-Morris (CR11) 1981
Martynenko (CR9) 2015; 6
Martynenko (CR7) 2003; 4
Martynenko (CR6) 2013
Bakhvalov (CR3) 1966; 6
Martynenko (CR5) 2000; 1
Trottenberg, Oosterlee, Schüller (CR4) 2001
Fedorenko (CR1) 1962; 1
Martynenko (CR8) 2010; 10
Martynenko (CR10) 2010; 2
Fedorenko (CR2) 1964; 4
R. P. Fedorenko (3545_CR2) 1964; 4
S. I. Martynenko (3545_CR6) 2013
G. A. Baker (3545_CR11) 1981
U. Trottenberg (3545_CR4) 2001
R. P. Fedorenko (3545_CR1) 1962; 1
S.I. Martynenko (3545_CR5) 2000; 1
S. I. Martynenko (3545_CR9) 2015; 6
N. S. Bakhvalov (3545_CR3) 1966; 6
S. I. Martynenko (3545_CR7) 2003; 4
S. I. Martynenko (3545_CR8) 2010; 10
S. I. Martynenko (3545_CR10) 2010; 2
References_xml – volume: 6
  start-page: 101
  year: 1966
  end-page: 135
  ident: CR3
  article-title: On the convergence of a relaxation method with natural constraints on the elliptic operator
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90118-2
– volume: 6
  start-page: 105
  year: 2015
  end-page: 120
  ident: CR9
  article-title: On design of parallel multigrid algorithms
  publication-title: Mat. Model. Chisl. Metody
– year: 1981
  ident: CR11
  publication-title: Padé Approximants, Encyclopedia of Mathematics and Its Applications
– year: 2001
  ident: CR4
  publication-title: Multigrid
– volume: 4
  start-page: 227
  year: 1964
  end-page: 235
  ident: CR2
  article-title: The speed of convergence of one iterative process
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90253-8
– volume: 2
  start-page: 232
  year: 2010
  end-page: 244
  ident: CR10
  article-title: Robust Multigrid Technique
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S2070048210020109
– volume: 1
  start-page: 1092
  year: 1962
  end-page: 1096
  ident: CR1
  article-title: A relaxation method for solving elliptic difference equations
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(62)90031-9
– volume: 1
  start-page: 83
  year: 2000
  end-page: 100
  ident: CR5
  article-title: Robust multigrid technique for solving partial differential equations on structured grids
  publication-title: Numer. Methods Programm.
– volume: 4
  start-page: 45
  year: 2003
  end-page: 51
  ident: CR7
  article-title: Parallelizing of universal multigrid technology
  publication-title: Vychisl. Metody Programm.
– volume: 10
  start-page: 87
  year: 2010
  end-page: 94
  ident: CR8
  article-title: Potentialities of the robust multigrid technique
  publication-title: Comp. Methods Appl. Math.
– year: 2013
  ident: CR6
  publication-title: Robust Multigrid Technology (Inst)
– volume-title: Robust Multigrid Technology (Inst)
  year: 2013
  ident: 3545_CR6
– volume: 2
  start-page: 232
  year: 2010
  ident: 3545_CR10
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S2070048210020109
– volume: 6
  start-page: 101
  year: 1966
  ident: 3545_CR3
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90118-2
– volume: 10
  start-page: 87
  year: 2010
  ident: 3545_CR8
  publication-title: Comp. Methods Appl. Math.
  doi: 10.2478/cmam-2010-0004
– volume: 1
  start-page: 1092
  year: 1962
  ident: 3545_CR1
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(62)90031-9
– volume: 4
  start-page: 227
  year: 1964
  ident: 3545_CR2
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90253-8
– volume: 1
  start-page: 83
  year: 2000
  ident: 3545_CR5
  publication-title: Numer. Methods Programm.
– volume-title: Multigrid
  year: 2001
  ident: 3545_CR4
– volume: 4
  start-page: 45
  year: 2003
  ident: 3545_CR7
  publication-title: Vychisl. Metody Programm.
– volume: 6
  start-page: 105
  year: 2015
  ident: 3545_CR9
  publication-title: Mat. Model. Chisl. Metody
– volume-title: Padé Approximants, Encyclopedia of Mathematics and Its Applications
  year: 1981
  ident: 3545_CR11
SSID ssj0000327838
Score 1.9940791
Snippet The unsatisfactory operation of a parallel multigrid algorithm is caused by two reasons: the imbalanced load of processors and the intensive exchanges of data...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 120
SubjectTerms Boundary value problems
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Processors
Reduction
Simulation and Modeling
Title Parallel multigrid technique: Reduction to independent problems
URI https://link.springer.com/article/10.1134/S2070048217010100
https://www.proquest.com/docview/1880779870
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 2070-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327838
  issn: 2070-0482
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDTA968Lc4nZKDJ6WYpqlJvIiIw4OOsansVvJTBrJJW_37TbK2zl8HpafSNpTXJO8l7_X7AeBIGYW18BU1GKuICC95y0UcqSQ9kzbmEulALbmlvR4bjXi_-o-7qKvd65RkmKln3BFyOsTIS7Ez7BXE3eHW6YvO2zHPaxgMH5uNFZR4eEQg0SEPVXFPVNnMH1v57I8-gswvedHgbrpr_3rRdbBaRZfwctYdNsCCmWyClTnNQXd21wi1Flvgoi9yT1N5hqGy8Ckfa9jIup7DgRd29Z8OllM4boi5Jaw4NMU2eOhe31_dRBVTIVJu8KLIYi19TKMplYlBCqeCG40VF5x6wqCImY2ZkoZwxIWSJE2sQNQqgy2L3Yp2B7Qm04nZBdA6OwupEpsmhiCRCsokocYqzajGJG2D49qy2ctMOiMLS46EZN9s1Aad2vZZNYqKzGvFUcrdlNIGJ7Wt5y7_1tjen-7eB8vY--qwr9IBrTJ_NQdgSb2V4yI_DJ3rHarsxmI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBfXBuzidmgeflGKapqbxRUQcE7cxtil7K2kuMpBN2urvN8naOm8PSp9Kk1C-Jjnn5Jx-HwAnQgksua2owVh4hFvKW8Z9TwThRaJ9liDpVEvatNuNRiPWK_7jzspq9zIl6Xbqme4IOR9gZKnYI2wZxM1l4vRFYgyWJczvDx6rgxUUWPEIp0SHrKiK6VFkM38c5bM9-nAyv-RFnblprv_rRTfAWuFdwuvZdNgEC2qyBVbnOAfNXacias22wVWPp1ZN5Rm6ysKndCxhRet6CfuW2NV-OphP4bhSzM1hoUOT7YCH5u3wpuUVmgqeMIsXeRrLxPo0ktIkUEjgkDMlsWCcUaswyP1I-5FIFGGIcZGQMNAcUS0U1pFvItpdUJtMJ2oPQG1w5okIdBgognjIaZQQqrSQEZWYhHVwWiIbv8yoM2IXcgQk_oZRHTRK7ONiFWWx5YqjlJktpQ7OSqznHv822P6fWh-D5daw047bd937A7CCrd12ZywNUMvTV3UIlsRbPs7SIzfR3gEB0clG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDqIge_C1Op-bgSSlL09Q0XkTUoTjHcCq7lfyUgXSjrf79Jl1b56-DSE-lbSgvSV9e3uv3A8Ch1BIr7ipqMJYe4U7ylnHfk0F4IozPBFIFtaRDu91oMGC9knOaVdXuVUpy8k-DU2lK8tZYmZJBQlp9jJwse4Sdmrg9bMw-R1wdvQvX-0_1JgsKHEiioNIhB1ixT5SZzR9b-eybPhacX3Kkhetpr_z7pVfBcrnqhOeTYbIGZnSyDpamtAjt2V0t4JptgLMeTx1l5QUWFYfP6VDBWu71FN47wVfXpTAfwWFN0s1hyafJNsFj--rh4torWQuetJMaeQYr4dY6ilIRaCRxyJlWWDLOqCMPcj8yfiSFJgwxLgUJA8MRNVJjE_k20t0Cs8ko0dsAGmtzLmRgwkATxENOI0GoNlJFVGESNsBRZeV4PJHUiItQJCDxNxs1QLPqh7icXVnsNOQoZfZT0wDHld2nLv_W2M6f7j4AC73Ldty56d7ugkXs3Hmx9dIEs3n6qvfAvHzLh1m6X4y5dzmT0io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+multigrid+technique%3A+Reduction+to+independent+problems&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Martynenko%2C+S.+I.&rft.au=Volokhov%2C+V.+M.&rft.au=Yanovskiy%2C+L.+S.&rft.date=2017-01-01&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=9&rft.issue=1&rft.spage=120&rft.epage=126&rft_id=info:doi/10.1134%2FS2070048217010100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S2070048217010100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon