NGBoost-based prediction of carbonation in Alkali-activated slag concrete enhanced by metaheuristic algorithms

Concrete carbonation represents a critical deterioration mechanism that significantly compromises the long-term structural integrity of reinforced concrete systems. Traditional methods for assessing carbonation depth (CD) in Alkali-activated slag concrete (AASC) are labor-intensive, costly, and dema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials Jg. 500; S. 144257
Hauptverfasser: Chen, Yun, Fu, Qianwang, Zheng, Wenbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 21.11.2025
Schlagworte:
ISSN:0950-0618
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Concrete carbonation represents a critical deterioration mechanism that significantly compromises the long-term structural integrity of reinforced concrete systems. Traditional methods for assessing carbonation depth (CD) in Alkali-activated slag concrete (AASC) are labor-intensive, costly, and demand specialized expertise. To address the current gap in applying machine learning (ML) techniques for accurate CD prediction in AASC, this study developed ML frameworks for carbonation forecasting by integrating natural gradient boosting (NGBoost) with three bio-inspired optimization techniques: beluga whale optimization (BWO), remora optimization (ROA), and crayfish optimization (COA). The models were trained on a dataset of 136 data points with 9 input variables. The study employed a comprehensive evaluation framework incorporating four key metrics (Coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)) and Taylor diagram analysis to assess comparative model performance. The results showed that the COA-NGBoost algorithm achieved superior performance with R2 of 0.946, MAPE of 0.145, MAE of 1.451 mm, and RMSE of 2.099 mm. Shapley additive explanations (SHAP) analysis identified environmental conditions, specifically CO2 concentration and exposure time, as key factors influencing CD. Furthermore, an interactive software tool incorporating the COA-NGBoost framework was developed to facilitate probabilistic CD prediction and optimize AASC mixture proportioning. This investigation demonstrates the successful implementation of the proposed framework in parametric analysis of CD factors within AASC systems, providing valuable insights for durability-based design strategies. [Display omitted] •A novel natural gradient boosting (NGBoost) model accurately predicts carbonation depth (CD) in alkali-activated slag concrete (AASC).•Hyperparameter optimization using three novel bio-inspired algorithms, significantly improves NGBoost model performance.•The optimized COA-NGBoost model demonstrates exceptional accuracy (R2 = 0.946) and low error metrics.•SHAP analysis reveals CO2 concentration and exposure time as primary drivers of AASC carbonation.•A GUI enables easy prediction of AASC-CD progression, facilitating practical implementation in infrastructure management.
AbstractList Concrete carbonation represents a critical deterioration mechanism that significantly compromises the long-term structural integrity of reinforced concrete systems. Traditional methods for assessing carbonation depth (CD) in Alkali-activated slag concrete (AASC) are labor-intensive, costly, and demand specialized expertise. To address the current gap in applying machine learning (ML) techniques for accurate CD prediction in AASC, this study developed ML frameworks for carbonation forecasting by integrating natural gradient boosting (NGBoost) with three bio-inspired optimization techniques: beluga whale optimization (BWO), remora optimization (ROA), and crayfish optimization (COA). The models were trained on a dataset of 136 data points with 9 input variables. The study employed a comprehensive evaluation framework incorporating four key metrics (Coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)) and Taylor diagram analysis to assess comparative model performance. The results showed that the COA-NGBoost algorithm achieved superior performance with R2 of 0.946, MAPE of 0.145, MAE of 1.451 mm, and RMSE of 2.099 mm. Shapley additive explanations (SHAP) analysis identified environmental conditions, specifically CO2 concentration and exposure time, as key factors influencing CD. Furthermore, an interactive software tool incorporating the COA-NGBoost framework was developed to facilitate probabilistic CD prediction and optimize AASC mixture proportioning. This investigation demonstrates the successful implementation of the proposed framework in parametric analysis of CD factors within AASC systems, providing valuable insights for durability-based design strategies. [Display omitted] •A novel natural gradient boosting (NGBoost) model accurately predicts carbonation depth (CD) in alkali-activated slag concrete (AASC).•Hyperparameter optimization using three novel bio-inspired algorithms, significantly improves NGBoost model performance.•The optimized COA-NGBoost model demonstrates exceptional accuracy (R2 = 0.946) and low error metrics.•SHAP analysis reveals CO2 concentration and exposure time as primary drivers of AASC carbonation.•A GUI enables easy prediction of AASC-CD progression, facilitating practical implementation in infrastructure management.
ArticleNumber 144257
Author Fu, Qianwang
Zheng, Wenbo
Chen, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Chen
  fullname: Chen, Yun
  organization: School of Civil Engineering and Architecture, Hainan University, Haikou, Hainan 570228, China
– sequence: 2
  givenname: Qianwang
  orcidid: 0000-0002-1124-4735
  surname: Fu
  fullname: Fu, Qianwang
  email: fqw324@hainanu.edu.cn
  organization: School of Civil Engineering and Architecture, Hainan University, Haikou, Hainan 570228, China
– sequence: 3
  givenname: Wenbo
  surname: Zheng
  fullname: Zheng, Wenbo
  organization: School of Civil Engineering and Architecture, Hainan University, Haikou, Hainan 570228, China
BookMark eNqNkE1PAjEQhnvARED_Q_0Bu7Z1P49IFE2IXvTcTNtZKO62pC0k_HsX8eDR02Q-3ndmnhmZOO-QkDvOcs54db_LtXfqYHszQMoFE2XOi0KU9YRMWVuyjFW8uSazGHeMsUpUYkrc2-rR-5gyBREN3Qc0VifrHfUd1RCUd_CTWkcX_Rf0NoOxf4Q0TsceNnTcqQMmpOi24PRYVic6YIItHoKNyWoK_cYHm7ZDvCFXHfQRb3_jnHw-P30sX7L1--p1uVhnmjciZVCwVlVQNHUHHceWN01XmRpNZ0ojRFNCyxWWRqlKM9UCNqwusNKlEKgMYw9z0l58dfAxBuzkPtgBwklyJs-w5E7-gSXPsOQF1qhdXrQ4Hni0GGTUFs-f2YA6SePtP1y-AcGkgHw
Cites_doi 10.1016/j.conbuildmat.2019.117336
10.1016/j.conbuildmat.2024.138351
10.1016/j.conbuildmat.2012.01.017
10.1016/j.cemconres.2017.02.009
10.1016/j.jcou.2020.101185
10.1016/j.jclepro.2024.141172
10.1016/j.knosys.2022.110192
10.1617/s11527-012-9842-1
10.1016/j.knosys.2022.109215
10.1007/s10462-023-10567-4
10.1016/j.conbuildmat.2005.01.052
10.1016/j.jclepro.2020.123697
10.1016/j.conbuildmat.2021.124389
10.1617/s11527-014-0289-4
10.1002/suco.202300173
10.1016/j.autcon.2024.105943
10.1016/j.jrmge.2021.06.012
10.1016/j.asoc.2024.111661
10.1016/j.conbuildmat.2019.117455
10.1061/(ASCE)ST.1943-541X.0003401
10.1088/1757-899X/322/2/022048
10.1016/S0008-8846(01)00574-9
10.1016/j.asoc.2020.106552
10.1016/j.eswa.2021.115665
10.1016/j.conbuildmat.2022.126359
10.1016/j.engfailanal.2022.106786
10.1016/j.aei.2020.101201
10.1016/j.asoc.2022.109641
10.1038/s43017-020-0093-3
10.1007/s11709-024-1039-5
10.1016/j.clay.2013.02.020
10.1016/j.ceramint.2017.12.226
10.1103/PhysRevE.49.4677
10.1016/j.conbuildmat.2023.131781
10.1002/suco.202200269
10.1016/j.jclepro.2024.142746
10.1007/s11709-024-1041-y
10.1016/j.asoc.2021.108182
10.1016/j.conbuildmat.2024.136176
10.1016/j.conbuildmat.2015.03.036
10.1016/j.conbuildmat.2023.133412
10.28991/CEJ-2023-09-11-020
10.1016/j.cemconcomp.2018.01.013
10.21809/rilemtechlett.2022.157
10.1016/j.conbuildmat.2021.122496
10.1016/j.cemconcomp.2020.103863
10.1016/S0008-8846(00)00227-1
10.1007/s00521-017-3052-2
10.1016/j.autcon.2024.105516
10.1016/j.knosys.2023.110554
10.1016/j.cemconcomp.2013.12.001
10.1016/j.conbuildmat.2020.121050
10.1016/j.cma.2020.113609
10.1016/j.conbuildmat.2020.118581
10.1016/j.conbuildmat.2019.03.267
10.1007/s11831-021-09644-0
10.1016/j.conbuildmat.2022.128483
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2025.144257
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_conbuildmat_2025_144257
S0950061825044083
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFO
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
~G-
~HD
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AHDLI
AI.
ASPBG
AVWKF
AZFZN
BAIFH
BBTPI
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SMS
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c182t-a409b6a487faf1e9188f6d7edfd5d2285a91be5dbb6c0b9ae8074e6c522ebd003
ISSN 0950-0618
IngestDate Thu Nov 27 01:00:26 EST 2025
Sat Nov 29 17:05:08 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Beluga Whale Optimization algorithm
Natural gradient boosting
Alkali-activated slag concrete
Remora Optimization Algorithm
Carbonation depth
Crayfish Optimization Algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-a409b6a487faf1e9188f6d7edfd5d2285a91be5dbb6c0b9ae8074e6c522ebd003
ORCID 0000-0002-1124-4735
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2025_144257
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2025_144257
PublicationCentury 2000
PublicationDate 2025-11-21
PublicationDateYYYYMMDD 2025-11-21
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-21
  day: 21
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shahmansouri, Yazdani, Ghanbari (bib36) 2021; 279
Singh, Middendorf (bib32) 2020; 237
Shi, Yao, Wang (bib13) 2021; 304
T. Duan, A. Avati, D. Ding, et al, NGBoost: natural gradient boosting for probabilistic prediction, arXiv Prints, (2019), arXiv:1910.03225.
Le, Nguyen, Sang-To (bib40) 2024; 18
Yıldız, Kumar, Panagant (bib59) 2023; 271
Xiao, Li, Guan (bib16) 2018; 322
Sun, Lee (bib57) 2024; 426
Al Mashhadani, Wong, Kong (bib3) 2023; 9
Shahmansouri, Bengar, Ghanbari (bib34) 2020; 31
Han, Lv, Lin (bib66) 2023; 392
Zhang, Zhang, Bao (bib27) 2023; 65
Xi, Zhang, Li (bib75) 2024; 18
Liang, Lu, Ma (bib1) 2020; 39
Gluth, Grengg, Ukrainczyk (bib6) 2022; 7
Mei, Sun, Li (bib47) 2022; 142
Huo, Wang, Huang (bib28) 2023; 76
Luo, Li, Wang (bib68) 2024; 442
Cao, Su, Antwi-Afari (bib69) 2024; 465
Jiang, Lin, Cai (bib11) 2000; 30
Felix, Carrazedo, Possan (bib21) 2021; 266
Biswas, Li, Zhang (bib25) 2022; 346
Jiang (bib50) 2019
Aye, Wansaseub, Kumar (bib58) 2023; 137
Habert, Miller, John (bib5) 2020; 1
Provis (bib4) 2018; 114
Singh, Ishwarya, Gupta (bib33) 2015; 85
Law, Adam, Molyneaux (bib48) 2012; 45
Chen, Feng, Wang (bib42) 2022; 148
Khunthongkeaw, Tangtermsirikul, Leelawat (bib10) 2006; 20
Kumar, Yildiz, Mehta (bib60) 2023; 261
2007, EN 14630,European Committee for StandardizationBrussels. Products and systems for the protection and repair of concrete structures-test methods-determination of carbonation depth in hardened concrete by the phenolphthalein method, Brussels: European Committee for Standardization, 2007.
Moghaddas, Nekoei, Golafshani (bib2) 2022; 130
Chen, Wu, Xia (bib30) 2021; 279
Liu (bib51) 2019
Chen, Liu, Shen (bib71) 2025; 170
Behnood, Golafshani (bib18) 2022; 29
Bernal, Ke, Criado (bib29) 2017; 36
Shahmansouri, Nematzadeh, Behnood (bib37) 2021; 36
Bernal, Gutiérrez, Provis (bib72) 2012; 33
Zhang, Xiao (bib12) 2018; 88
Lu (bib53) 2019
Luo, Li, Lin (bib67) 2023; 406
Carević, Ignjatović, Dragaš (bib9) 2019; 213
Silva, Neves, De Brito (bib17) 2014; 50
Zhong, Li, Meng (bib63) 2022; 251
Mantegna (bib64) 1994; 49
Kellouche, Boukhatem, Ghrici (bib22) 2019; 31
Aguayo, Torres, Thombare (bib15) 2020
Shahmansouri, Bengar, Ghanbari (bib35) 2020; 5
Bernal, Provis, Mejía de Gutiérrez (bib49) 2015; 48
Zhang, Zhou, Zhou (bib14) 2013; 79
Gomaa, Han, Gawady (bib39) 2021; 115
Sáez del Bosque, Van den Heede, Belie (bib7) 2020; 234
Lahoti, Wong, Yang (bib31) 2018; 44
Chen, Lin, Sagoe-Crentsil (bib23) 2022; 321
Neto, Cascudo (bib76) 2025; 111
Deka (bib41) 2019
Tambara, Jr, Hirsch, Dehn (bib73) 2024; 449
Zhu, Chu, Wang (bib45) 2021; 13
Xu (bib52) 2019
Gardoni, Der Kiureghian, Mosalam (bib43) 2002; 128
Tambara, Jr, Hirsch, Dehn (bib55) 2024; 449
Nguyen, Nguyen, Le (bib38) 2020; 247
Hosseinzadeh, Dehestani, Hosseinzadeh (bib56) 2023; 76
Jia, Peng, Lang (bib62) 2021; 185
Wu, Feng, Liu (bib70) 2024; 165
Tran, Mai, To (bib26) 2023; 24
Jia, Rao, Wen (bib65) 2023; 56
Abuodeh, Abdalla, Hawileh (bib20) 2020; 95
Chakraborty, Elhegazy, Elzarka (bib46) 2020; 46
Bakhareva, Sanjayana, Chengb (bib74) 2001; 31
Golafshani, Behnood, Kim (bib24) 2024; 159
Pradhan, Mishra, Biswal (bib54) 2024; 25
Abualigah, Diabat, Mirjalili (bib61) 2021; 376
Fatemi, Ganjali, Semiromi (bib77) 2025; 23
Mahjoubi, Meng, Bao (bib19) 2022; 115
Liang (10.1016/j.conbuildmat.2025.144257_bib1) 2020; 39
Xi (10.1016/j.conbuildmat.2025.144257_bib75) 2024; 18
Abuodeh (10.1016/j.conbuildmat.2025.144257_bib20) 2020; 95
10.1016/j.conbuildmat.2025.144257_bib8
Aguayo (10.1016/j.conbuildmat.2025.144257_bib15) 2020
Xiao (10.1016/j.conbuildmat.2025.144257_bib16) 2018; 322
Shahmansouri (10.1016/j.conbuildmat.2025.144257_bib35) 2020; 5
Zhu (10.1016/j.conbuildmat.2025.144257_bib45) 2021; 13
Silva (10.1016/j.conbuildmat.2025.144257_bib17) 2014; 50
Tran (10.1016/j.conbuildmat.2025.144257_bib26) 2023; 24
Luo (10.1016/j.conbuildmat.2025.144257_bib68) 2024; 442
Al Mashhadani (10.1016/j.conbuildmat.2025.144257_bib3) 2023; 9
Moghaddas (10.1016/j.conbuildmat.2025.144257_bib2) 2022; 130
Mahjoubi (10.1016/j.conbuildmat.2025.144257_bib19) 2022; 115
Nguyen (10.1016/j.conbuildmat.2025.144257_bib38) 2020; 247
Kumar (10.1016/j.conbuildmat.2025.144257_bib60) 2023; 261
Deka (10.1016/j.conbuildmat.2025.144257_bib41) 2019
Gomaa (10.1016/j.conbuildmat.2025.144257_bib39) 2021; 115
Mantegna (10.1016/j.conbuildmat.2025.144257_bib64) 1994; 49
Behnood (10.1016/j.conbuildmat.2025.144257_bib18) 2022; 29
Singh (10.1016/j.conbuildmat.2025.144257_bib32) 2020; 237
Jia (10.1016/j.conbuildmat.2025.144257_bib62) 2021; 185
Law (10.1016/j.conbuildmat.2025.144257_bib48) 2012; 45
Provis (10.1016/j.conbuildmat.2025.144257_bib4) 2018; 114
Felix (10.1016/j.conbuildmat.2025.144257_bib21) 2021; 266
Xu (10.1016/j.conbuildmat.2025.144257_bib52) 2019
Wu (10.1016/j.conbuildmat.2025.144257_bib70) 2024; 165
Shahmansouri (10.1016/j.conbuildmat.2025.144257_bib34) 2020; 31
Fatemi (10.1016/j.conbuildmat.2025.144257_bib77) 2025; 23
Chakraborty (10.1016/j.conbuildmat.2025.144257_bib46) 2020; 46
Zhang (10.1016/j.conbuildmat.2025.144257_bib12) 2018; 88
10.1016/j.conbuildmat.2025.144257_bib44
Habert (10.1016/j.conbuildmat.2025.144257_bib5) 2020; 1
Khunthongkeaw (10.1016/j.conbuildmat.2025.144257_bib10) 2006; 20
Jia (10.1016/j.conbuildmat.2025.144257_bib65) 2023; 56
Luo (10.1016/j.conbuildmat.2025.144257_bib67) 2023; 406
Bernal (10.1016/j.conbuildmat.2025.144257_bib29) 2017; 36
Singh (10.1016/j.conbuildmat.2025.144257_bib33) 2015; 85
Lu (10.1016/j.conbuildmat.2025.144257_bib53) 2019
Shahmansouri (10.1016/j.conbuildmat.2025.144257_bib37) 2021; 36
Biswas (10.1016/j.conbuildmat.2025.144257_bib25) 2022; 346
Shi (10.1016/j.conbuildmat.2025.144257_bib13) 2021; 304
Bernal (10.1016/j.conbuildmat.2025.144257_bib72) 2012; 33
Liu (10.1016/j.conbuildmat.2025.144257_bib51) 2019
Chen (10.1016/j.conbuildmat.2025.144257_bib71) 2025; 170
Zhang (10.1016/j.conbuildmat.2025.144257_bib27) 2023; 65
Shahmansouri (10.1016/j.conbuildmat.2025.144257_bib36) 2021; 279
Sáez del Bosque (10.1016/j.conbuildmat.2025.144257_bib7) 2020; 234
Chen (10.1016/j.conbuildmat.2025.144257_bib30) 2021; 279
Jiang (10.1016/j.conbuildmat.2025.144257_bib50) 2019
Sun (10.1016/j.conbuildmat.2025.144257_bib57) 2024; 426
Cao (10.1016/j.conbuildmat.2025.144257_bib69) 2024; 465
Jiang (10.1016/j.conbuildmat.2025.144257_bib11) 2000; 30
Bakhareva (10.1016/j.conbuildmat.2025.144257_bib74) 2001; 31
Mei (10.1016/j.conbuildmat.2025.144257_bib47) 2022; 142
Han (10.1016/j.conbuildmat.2025.144257_bib66) 2023; 392
Zhong (10.1016/j.conbuildmat.2025.144257_bib63) 2022; 251
Chen (10.1016/j.conbuildmat.2025.144257_bib23) 2022; 321
Abualigah (10.1016/j.conbuildmat.2025.144257_bib61) 2021; 376
Le (10.1016/j.conbuildmat.2025.144257_bib40) 2024; 18
Kellouche (10.1016/j.conbuildmat.2025.144257_bib22) 2019; 31
Aye (10.1016/j.conbuildmat.2025.144257_bib58) 2023; 137
Tambara (10.1016/j.conbuildmat.2025.144257_bib73) 2024; 449
Chen (10.1016/j.conbuildmat.2025.144257_bib42) 2022; 148
Golafshani (10.1016/j.conbuildmat.2025.144257_bib24) 2024; 159
Neto (10.1016/j.conbuildmat.2025.144257_bib76) 2025; 111
Gardoni (10.1016/j.conbuildmat.2025.144257_bib43) 2002; 128
Bernal (10.1016/j.conbuildmat.2025.144257_bib49) 2015; 48
Carević (10.1016/j.conbuildmat.2025.144257_bib9) 2019; 213
Pradhan (10.1016/j.conbuildmat.2025.144257_bib54) 2024; 25
Tambara (10.1016/j.conbuildmat.2025.144257_bib55) 2024; 449
Zhang (10.1016/j.conbuildmat.2025.144257_bib14) 2013; 79
Yıldız (10.1016/j.conbuildmat.2025.144257_bib59) 2023; 271
Gluth (10.1016/j.conbuildmat.2025.144257_bib6) 2022; 7
Hosseinzadeh (10.1016/j.conbuildmat.2025.144257_bib56) 2023; 76
Lahoti (10.1016/j.conbuildmat.2025.144257_bib31) 2018; 44
Huo (10.1016/j.conbuildmat.2025.144257_bib28) 2023; 76
References_xml – volume: 142
  year: 2022
  ident: bib47
  article-title: Probabilistic prediction model of steel to concrete bond failure under high temperature by machine learning
  publication-title: Eng. Fail. Anal.
– volume: 442
  year: 2024
  ident: bib68
  article-title: Machine learning based modeling for predicting the compressive strength of solid waste material-incorporated magnesium phosphate cement
  publication-title: J. Clean. Prod.
– volume: 45
  start-page: 1425
  year: 2012
  end-page: 1437
  ident: bib48
  article-title: Durability assessment of alkali activated slag (AAS) concrete
  publication-title: Mater. Struct.
– volume: 88
  start-page: 86
  year: 2018
  end-page: 99
  ident: bib12
  article-title: Prediction model of carbonation depth for recycled aggregate concrete
  publication-title: Cem. Concr. Compos
– volume: 95
  year: 2020
  ident: bib20
  article-title: Assessment of compressive strength of ultra-high performance concrete using deep machine learning techniques
  publication-title: Appl. Soft. Comput.
– volume: 234
  year: 2020
  ident: bib7
  article-title: Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content
  publication-title: Constr. Build. Mater.
– volume: 46
  year: 2020
  ident: bib46
  article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting
  publication-title: Adv. Eng. Inf.
– volume: 18
  start-page: 30
  year: 2024
  end-page: 50
  ident: bib75
  article-title: A comprehensive comparison of different regression techniques and nature-inspired optimization algorithms to predict carbonation depth of recycled aggregate concrete
  publication-title: Front. Struct. Civ. Eng.
– volume: 50
  start-page: 73
  year: 2014
  end-page: 81
  ident: bib17
  article-title: Statistical modelling of carbonation in reinforced concrete
  publication-title: Cem. Concr. Compos
– volume: 426
  year: 2024
  ident: bib57
  article-title: An interpretable probabilistic machine learning model for forecasting compressive strength of oil palm shell-based lightweight aggregate concrete containing fly ash or silica fume
  publication-title: Constr. Build. Mater.
– volume: 449
  year: 2024
  ident: bib73
  article-title: Carbonation resistance of alkali-activated GGBFS/calcined clay concrete under natural and accelerated conditions
  publication-title: Constr. Build. Mater.
– year: 2019
  ident: bib52
  article-title: Study on carbonation resistance and mechanism of alkali slag concrete
– volume: 65
  year: 2023
  ident: bib27
  article-title: A framework for predicting the carbonation depth of concrete incorporating fly ash based on a least squares support vector machine and metaheuristic algorithms
  publication-title: J. Build. Eng.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib29
  article-title: Factors controlling carbonation resistance of alkali-activated materials
  publication-title: ACI
– volume: 25
  start-page: 2839
  year: 2024
  end-page: 2854
  ident: bib54
  article-title: Effects of rice husk ash on strength and durability performance of slag-based alkali-activated concrete
  publication-title: Struct. Concr.
– start-page: 365
  year: 2020
  end-page: 371
  ident: bib15
  article-title: Evaluating carbonation-induced corrosion in high-volume
  publication-title: SCM mixtures through the square root model
– volume: 170
  year: 2025
  ident: bib71
  article-title: Control of existing tunnel deformation caused by shield adjacent undercrossing construction using interpretable machine learning and multiobjective optimization
  publication-title: Autom. Constr.
– volume: 44
  start-page: 5726
  year: 2018
  end-page: 5734
  ident: bib31
  article-title: Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature
  publication-title: Ceram. Int.
– volume: 20
  start-page: 744
  year: 2006
  end-page: 753
  ident: bib10
  article-title: A study on carbonation depth prediction for fly ash concrete
  publication-title: Constr. Build. Mater.
– volume: 279
  year: 2021
  ident: bib36
  article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite
  publication-title: J. Clean. Prod.
– volume: 137
  start-page: 2111
  year: 2023
  end-page: 2128
  ident: bib58
  article-title: Airfoil shape optimisation using a multi-fidelity surrogate-assisted metaheuristic with a new multi-objective infill sampling technique
  publication-title: Cmes. Comp. Model. Eng.
– volume: 31
  start-page: 969
  year: 2019
  end-page: 988
  ident: bib22
  article-title: Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network
  publication-title: Neural Comput. Appl.
– volume: 465
  year: 2024
  ident: bib69
  article-title: Enhancing mix proportion design of low carbon concrete for shield segment using a combination of bayesian optimization-NGBoost and NSGA-III algorithm
  publication-title: J. Clean. Prod.
– volume: 39
  year: 2020
  ident: bib1
  article-title: Carbonation behavior of recycled concrete with CO
  publication-title: J. CO
– year: 2019
  ident: bib51
  article-title: Study of the low temperature hardening and durability performance of recycled fine aggregate based alkali-activated slag concrete
– volume: 304
  year: 2021
  ident: bib13
  article-title: A modified numerical model for predicting carbonation depth of concrete with stress damage
  publication-title: Constr. Build. Mater.
– volume: 24
  start-page: 2145
  year: 2023
  end-page: 2169
  ident: bib26
  article-title: Machine learning approach in investigating carbonation depth of concrete containing fly ash
  publication-title: Struct. Concr.
– volume: 114
  start-page: 40
  year: 2018
  end-page: 48
  ident: bib4
  article-title: Alkali-activated materials
  publication-title: Cem. Concr. Res.
– volume: 13
  start-page: 1231
  year: 2021
  end-page: 1245
  ident: bib45
  article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework
  publication-title: J. Rock. Mech. Geotech. Eng.
– volume: 346
  year: 2022
  ident: bib25
  article-title: Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete
  publication-title: Constr. Build. Mater.
– volume: 76
  year: 2023
  ident: bib28
  article-title: Predicting carbonation depth of concrete using a hybrid ensemble model
  publication-title: J. Build. Eng.
– volume: 271
  year: 2023
  ident: bib59
  article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems
  publication-title: Knowl. Based Syst.
– volume: 148
  start-page: 04022096
  year: 2022
  ident: bib42
  article-title: Probabilistic machine learning methods for performance prediction of structure and infrastructures through natural gradient boosting
  publication-title: J. Struct. Eng.
– volume: 76
  year: 2023
  ident: bib56
  article-title: Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms
  publication-title: J. Build. Eng.
– volume: 36
  year: 2021
  ident: bib37
  article-title: Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method
  publication-title: J. Build. Eng.
– reference: 2007, EN 14630,European Committee for StandardizationBrussels. Products and systems for the protection and repair of concrete structures-test methods-determination of carbonation depth in hardened concrete by the phenolphthalein method, Brussels: European Committee for Standardization, 2007.
– volume: 261
  year: 2023
  ident: bib60
  article-title: Chaotic marine predators algorithm for global optimization of real-world engineering problems
  publication-title: Knowl. Based Syst.
– volume: 33
  start-page: 99
  year: 2012
  end-page: 108
  ident: bib72
  article-title: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends
  publication-title: Constr. Build. Mater.
– volume: 29
  start-page: 1941
  year: 2022
  end-page: 1964
  ident: bib18
  article-title: Artificial intelligence to model the performance of concrete mixtures and elements: a review
  publication-title: Arch. Comput. Method. E.
– volume: 185
  year: 2021
  ident: bib62
  article-title: Remora optimization algorithm
  publication-title: Expert. Syst. Appl.
– volume: 392
  year: 2023
  ident: bib66
  article-title: Exploring interpretable ensemble learning to predict mechanical strength and thermal conductivity of aerogel incorporated concrete
  publication-title: Constr. Build. Mater.
– volume: 449
  year: 2024
  ident: bib55
  article-title: Carbonation resistance of alkali-activated GGBFS/ calcined clay concrete under natural and accelerated conditions
  publication-title: Constr. Build. Mater.
– volume: 23
  year: 2025
  ident: bib77
  article-title: Thermal and carbonation resistance of tunnel concrete: Experimental evaluation and hybrid ANN-GPR modeling under fire-CO₂ exposure
  publication-title: Case. Stud. Constr. Mat.
– volume: 251
  year: 2022
  ident: bib63
  article-title: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm
  publication-title: Knowl. Based Syst.
– volume: 165
  year: 2024
  ident: bib70
  article-title: Predicting existing tunnel deformation from adjacent foundation pit construction using hybrid machine learning
  publication-title: Autom. Constr.
– volume: 1
  start-page: 559
  year: 2020
  end-page: 573
  ident: bib5
  article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries
  publication-title: Nat. Rev. Earth. Env.
– volume: 237
  year: 2020
  ident: bib32
  article-title: Geopolymers as an alternative to Portland cement: an overview
  publication-title: Constr. Build. Mater.
– volume: 31
  start-page: 1277
  year: 2001
  end-page: 1283
  ident: bib74
  article-title: Resistance of alkali-activated slag concrete to carbonation
  publication-title: Cem. Concr. Res.
– volume: 31
  year: 2020
  ident: bib34
  article-title: Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method
  publication-title: J. Build. Eng.
– year: 2019
  ident: bib50
  article-title: Study on the properties of concrete mixed with rice husk ash
– volume: 279
  year: 2021
  ident: bib30
  article-title: Geopolymer concrete durability subjected to aggressive environments-a review of influence factors and comparison with ordinary Portland cement
  publication-title: Constr. Build. Mater.
– volume: 85
  start-page: 78
  year: 2015
  end-page: 90
  ident: bib33
  article-title: Geopolymer concrete: a review of some recent developments
  publication-title: Constr. Build. Mater.
– volume: 56
  start-page: 1919
  year: 2023
  end-page: 1979
  ident: bib65
  article-title: Crayfish optimization algorithm
  publication-title: Artif. Intell. Rev.
– volume: 406
  year: 2023
  ident: bib67
  article-title: Research on predicting compressive strength of magnesium silicate hydrate cement based on machine learning
  publication-title: Constr. Build. Mater.
– volume: 111
  year: 2025
  ident: bib76
  article-title: Prediction of natural carbonation depths in concretes with ensemble metamodel based on artificial neural networks from time series analysis with 20 years of exposure
  publication-title: J. Build. Eng.
– volume: 247
  year: 2020
  ident: bib38
  article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches
  publication-title: Constr. Build. Mater.
– volume: 79
  start-page: 36
  year: 2013
  end-page: 40
  ident: bib14
  article-title: Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability
  publication-title: Appl. Clay. Sci.
– volume: 159
  year: 2024
  ident: bib24
  article-title: Metaheuristic optimization based- ensemble learners for the carbonation assessment of recycled aggregate concrete
  publication-title: Appl. Soft. Comput.
– volume: 18
  start-page: 1028
  year: 2024
  end-page: 1049
  ident: bib40
  article-title: Machine learning based models for predicting compressive strength of geopolymer concrete
  publication-title: Front. Struct. Civ. Eng.
– volume: 376
  year: 2021
  ident: bib61
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Method. Appl. M.
– volume: 49
  start-page: 4677
  year: 1994
  end-page: 4683
  ident: bib64
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev. E.
– volume: 48
  start-page: 653
  year: 2015
  end-page: 669
  ident: bib49
  article-title: Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions
  publication-title: Mater. Struct.
– volume: 128
  start-page: 1024
  year: 2002
  end-page: 1038
  ident: bib43
  article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations
  publication-title: J. Eng. Mech.
– reference: T. Duan, A. Avati, D. Ding, et al, NGBoost: natural gradient boosting for probabilistic prediction, arXiv Prints, (2019), arXiv:1910.03225.
– volume: 7
  start-page: 58
  year: 2022
  end-page: 67
  ident: bib6
  article-title: Acid resistance of alkali-activated materials: recent advances and research needs
  publication-title: Rilem. Tech. Lett.
– volume: 322
  year: 2018
  ident: bib16
  article-title: Prediction Model for carbonation depth of concrete subjected to freezing-thawing cycles
  publication-title: IOP Conference Series Materials Science Engineering
– volume: 321
  year: 2022
  ident: bib23
  article-title: Development of hybrid machine learning-based carbonation models with weighting function
  publication-title: Constr. Build. Mater.
– volume: 5
  start-page: 92
  year: 2020
  end-page: 117
  ident: bib35
  article-title: Experimental investigation and predictive modeling of compressive strength of pozzolanic geopolymer concrete using gene expression programming
  publication-title: J. Concr. Struct. M.
– volume: 213
  start-page: 194
  year: 2019
  end-page: 208
  ident: bib9
  article-title: Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete
  publication-title: Constr. Build. Mater.
– volume: 115
  year: 2022
  ident: bib19
  article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC)
  publication-title: Appl. Soft. Comput.
– year: 2019
  ident: bib41
  article-title: A primer on machine learning applications in civil engineering
– volume: 9
  start-page: 2927
  year: 2023
  end-page: 2957
  ident: bib3
  article-title: An evaluative review of recycled waste material utilization in high-performance concrete
  publication-title: Civ. Eng. J.
– volume: 115
  year: 2021
  ident: bib39
  article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete
  publication-title: Cem. Concr. Comp.
– volume: 266
  year: 2021
  ident: bib21
  article-title: Carbonation model for fly ash concrete based on artificial neural network: development and parametric analysis
  publication-title: Constr. Build. Mater.
– volume: 130
  year: 2022
  ident: bib2
  article-title: Application of artificial bee colony programming techniques for predicting the compressive strength of recycled aggregate concrete
  publication-title: Appl. Soft. Comput.
– volume: 30
  start-page: 699
  year: 2000
  end-page: 702
  ident: bib11
  article-title: A model for predicting carbonation of high-volume fly ash concrete
  publication-title: Cem. Concr. Res.
– year: 2019
  ident: bib53
  article-title: Research on steel corrosion mechanism of alkali-activated slag concrete in carbonation environments
– volume: 234
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib7
  article-title: Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117336
– volume: 449
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib55
  article-title: Carbonation resistance of alkali-activated GGBFS/ calcined clay concrete under natural and accelerated conditions
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.138351
– volume: 33
  start-page: 99
  year: 2012
  ident: 10.1016/j.conbuildmat.2025.144257_bib72
  article-title: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.01.017
– volume: 114
  start-page: 40
  year: 2018
  ident: 10.1016/j.conbuildmat.2025.144257_bib4
  article-title: Alkali-activated materials
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.02.009
– ident: 10.1016/j.conbuildmat.2025.144257_bib8
– volume: 39
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib1
  article-title: Carbonation behavior of recycled concrete with CO2-curing recycled aggregate under various environments
  publication-title: J. CO2. Util.
  doi: 10.1016/j.jcou.2020.101185
– volume: 442
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib68
  article-title: Machine learning based modeling for predicting the compressive strength of solid waste material-incorporated magnesium phosphate cement
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141172
– volume: 261
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib60
  article-title: Chaotic marine predators algorithm for global optimization of real-world engineering problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.110192
– volume: 45
  start-page: 1425
  year: 2012
  ident: 10.1016/j.conbuildmat.2025.144257_bib48
  article-title: Durability assessment of alkali activated slag (AAS) concrete
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-9842-1
– volume: 36
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib37
  article-title: Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method
  publication-title: J. Build. Eng.
– volume: 251
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib63
  article-title: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109215
– volume: 56
  start-page: 1919
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib65
  article-title: Crayfish optimization algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10567-4
– volume: 20
  start-page: 744
  issue: 9
  year: 2006
  ident: 10.1016/j.conbuildmat.2025.144257_bib10
  article-title: A study on carbonation depth prediction for fly ash concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.01.052
– volume: 279
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib36
  article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123697
– volume: 304
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib13
  article-title: A modified numerical model for predicting carbonation depth of concrete with stress damage
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124389
– volume: 48
  start-page: 653
  year: 2015
  ident: 10.1016/j.conbuildmat.2025.144257_bib49
  article-title: Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-014-0289-4
– volume: 25
  start-page: 2839
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib54
  article-title: Effects of rice husk ash on strength and durability performance of slag-based alkali-activated concrete
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202300173
– volume: 170
  year: 2025
  ident: 10.1016/j.conbuildmat.2025.144257_bib71
  article-title: Control of existing tunnel deformation caused by shield adjacent undercrossing construction using interpretable machine learning and multiobjective optimization
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105943
– volume: 13
  start-page: 1231
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib45
  article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework
  publication-title: J. Rock. Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.06.012
– volume: 159
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib24
  article-title: Metaheuristic optimization based- ensemble learners for the carbonation assessment of recycled aggregate concrete
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2024.111661
– volume: 237
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib32
  article-title: Geopolymers as an alternative to Portland cement: an overview
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117455
– volume: 148
  start-page: 04022096
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib42
  article-title: Probabilistic machine learning methods for performance prediction of structure and infrastructures through natural gradient boosting
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003401
– volume: 322
  year: 2018
  ident: 10.1016/j.conbuildmat.2025.144257_bib16
  article-title: Prediction Model for carbonation depth of concrete subjected to freezing-thawing cycles
  publication-title: IOP Conference Series Materials Science Engineering
  doi: 10.1088/1757-899X/322/2/022048
– volume: 31
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib34
  article-title: Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method
  publication-title: J. Build. Eng.
– volume: 76
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib28
  article-title: Predicting carbonation depth of concrete using a hybrid ensemble model
  publication-title: J. Build. Eng.
– year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib52
– volume: 23
  year: 2025
  ident: 10.1016/j.conbuildmat.2025.144257_bib77
  article-title: Thermal and carbonation resistance of tunnel concrete: Experimental evaluation and hybrid ANN-GPR modeling under fire-CO₂ exposure
  publication-title: Case. Stud. Constr. Mat.
– volume: 36
  start-page: 1
  year: 2017
  ident: 10.1016/j.conbuildmat.2025.144257_bib29
  article-title: Factors controlling carbonation resistance of alkali-activated materials
  publication-title: ACI
– volume: 31
  start-page: 1277
  year: 2001
  ident: 10.1016/j.conbuildmat.2025.144257_bib74
  article-title: Resistance of alkali-activated slag concrete to carbonation
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00574-9
– volume: 95
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib20
  article-title: Assessment of compressive strength of ultra-high performance concrete using deep machine learning techniques
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106552
– volume: 185
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib62
  article-title: Remora optimization algorithm
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2021.115665
– volume: 321
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib23
  article-title: Development of hybrid machine learning-based carbonation models with weighting function
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126359
– start-page: 365
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib15
  article-title: Evaluating carbonation-induced corrosion in high-volume
– volume: 449
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib73
  article-title: Carbonation resistance of alkali-activated GGBFS/calcined clay concrete under natural and accelerated conditions
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.138351
– volume: 128
  start-page: 1024
  year: 2002
  ident: 10.1016/j.conbuildmat.2025.144257_bib43
  article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations
  publication-title: J. Eng. Mech.
– volume: 76
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib56
  article-title: Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms
  publication-title: J. Build. Eng.
– volume: 142
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib47
  article-title: Probabilistic prediction model of steel to concrete bond failure under high temperature by machine learning
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106786
– volume: 46
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib46
  article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101201
– volume: 130
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib2
  article-title: Application of artificial bee colony programming techniques for predicting the compressive strength of recycled aggregate concrete
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.109641
– volume: 1
  start-page: 559
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib5
  article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries
  publication-title: Nat. Rev. Earth. Env.
  doi: 10.1038/s43017-020-0093-3
– volume: 18
  start-page: 1028
  issue: 7
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib40
  article-title: Machine learning based models for predicting compressive strength of geopolymer concrete
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-024-1039-5
– volume: 79
  start-page: 36
  year: 2013
  ident: 10.1016/j.conbuildmat.2025.144257_bib14
  article-title: Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability
  publication-title: Appl. Clay. Sci.
  doi: 10.1016/j.clay.2013.02.020
– volume: 44
  start-page: 5726
  issue: 5
  year: 2018
  ident: 10.1016/j.conbuildmat.2025.144257_bib31
  article-title: Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.226
– ident: 10.1016/j.conbuildmat.2025.144257_bib44
– volume: 49
  start-page: 4677
  issue: 5
  year: 1994
  ident: 10.1016/j.conbuildmat.2025.144257_bib64
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.49.4677
– volume: 392
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib66
  article-title: Exploring interpretable ensemble learning to predict mechanical strength and thermal conductivity of aerogel incorporated concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131781
– volume: 24
  start-page: 2145
  issue: 2
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib26
  article-title: Machine learning approach in investigating carbonation depth of concrete containing fly ash
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202200269
– volume: 5
  start-page: 92
  issue: 1
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib35
  article-title: Experimental investigation and predictive modeling of compressive strength of pozzolanic geopolymer concrete using gene expression programming
  publication-title: J. Concr. Struct. M.
– volume: 465
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib69
  article-title: Enhancing mix proportion design of low carbon concrete for shield segment using a combination of bayesian optimization-NGBoost and NSGA-III algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.142746
– volume: 18
  start-page: 30
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib75
  article-title: A comprehensive comparison of different regression techniques and nature-inspired optimization algorithms to predict carbonation depth of recycled aggregate concrete
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-024-1041-y
– volume: 137
  start-page: 2111
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib58
  article-title: Airfoil shape optimisation using a multi-fidelity surrogate-assisted metaheuristic with a new multi-objective infill sampling technique
  publication-title: Cmes. Comp. Model. Eng.
– volume: 115
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib19
  article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC)
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.108182
– volume: 426
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib57
  article-title: An interpretable probabilistic machine learning model for forecasting compressive strength of oil palm shell-based lightweight aggregate concrete containing fly ash or silica fume
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.136176
– volume: 85
  start-page: 78
  year: 2015
  ident: 10.1016/j.conbuildmat.2025.144257_bib33
  article-title: Geopolymer concrete: a review of some recent developments
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.036
– year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib51
– volume: 406
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib67
  article-title: Research on predicting compressive strength of magnesium silicate hydrate cement based on machine learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.133412
– volume: 9
  start-page: 2927
  issue: 11
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib3
  article-title: An evaluative review of recycled waste material utilization in high-performance concrete
  publication-title: Civ. Eng. J.
  doi: 10.28991/CEJ-2023-09-11-020
– volume: 88
  start-page: 86
  year: 2018
  ident: 10.1016/j.conbuildmat.2025.144257_bib12
  article-title: Prediction model of carbonation depth for recycled aggregate concrete
  publication-title: Cem. Concr. Compos
  doi: 10.1016/j.cemconcomp.2018.01.013
– volume: 7
  start-page: 58
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib6
  article-title: Acid resistance of alkali-activated materials: recent advances and research needs
  publication-title: Rilem. Tech. Lett.
  doi: 10.21809/rilemtechlett.2022.157
– volume: 279
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib30
  article-title: Geopolymer concrete durability subjected to aggressive environments-a review of influence factors and comparison with ordinary Portland cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122496
– year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib41
– volume: 111
  year: 2025
  ident: 10.1016/j.conbuildmat.2025.144257_bib76
  article-title: Prediction of natural carbonation depths in concretes with ensemble metamodel based on artificial neural networks from time series analysis with 20 years of exposure
  publication-title: J. Build. Eng.
– volume: 115
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib39
  article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete
  publication-title: Cem. Concr. Comp.
  doi: 10.1016/j.cemconcomp.2020.103863
– volume: 30
  start-page: 699
  issue: 5
  year: 2000
  ident: 10.1016/j.conbuildmat.2025.144257_bib11
  article-title: A model for predicting carbonation of high-volume fly ash concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(00)00227-1
– volume: 31
  start-page: 969
  year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib22
  article-title: Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3052-2
– volume: 165
  year: 2024
  ident: 10.1016/j.conbuildmat.2025.144257_bib70
  article-title: Predicting existing tunnel deformation from adjacent foundation pit construction using hybrid machine learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105516
– volume: 65
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib27
  article-title: A framework for predicting the carbonation depth of concrete incorporating fly ash based on a least squares support vector machine and metaheuristic algorithms
  publication-title: J. Build. Eng.
– year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib53
– volume: 271
  year: 2023
  ident: 10.1016/j.conbuildmat.2025.144257_bib59
  article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110554
– volume: 50
  start-page: 73
  year: 2014
  ident: 10.1016/j.conbuildmat.2025.144257_bib17
  article-title: Statistical modelling of carbonation in reinforced concrete
  publication-title: Cem. Concr. Compos
  doi: 10.1016/j.cemconcomp.2013.12.001
– volume: 266
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib21
  article-title: Carbonation model for fly ash concrete based on artificial neural network: development and parametric analysis
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121050
– year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib50
– volume: 376
  year: 2021
  ident: 10.1016/j.conbuildmat.2025.144257_bib61
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Method. Appl. M.
  doi: 10.1016/j.cma.2020.113609
– volume: 247
  year: 2020
  ident: 10.1016/j.conbuildmat.2025.144257_bib38
  article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118581
– volume: 213
  start-page: 194
  year: 2019
  ident: 10.1016/j.conbuildmat.2025.144257_bib9
  article-title: Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.267
– volume: 29
  start-page: 1941
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib18
  article-title: Artificial intelligence to model the performance of concrete mixtures and elements: a review
  publication-title: Arch. Comput. Method. E.
  doi: 10.1007/s11831-021-09644-0
– volume: 346
  year: 2022
  ident: 10.1016/j.conbuildmat.2025.144257_bib25
  article-title: Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128483
SSID ssj0006262
Score 2.4614415
Snippet Concrete carbonation represents a critical deterioration mechanism that significantly compromises the long-term structural integrity of reinforced concrete...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 144257
SubjectTerms Alkali-activated slag concrete
Beluga Whale Optimization algorithm
Carbonation depth
Crayfish Optimization Algorithm
Natural gradient boosting
Remora Optimization Algorithm
Title NGBoost-based prediction of carbonation in Alkali-activated slag concrete enhanced by metaheuristic algorithms
URI https://dx.doi.org/10.1016/j.conbuildmat.2025.144257
Volume 500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006262
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgQ2h7QFy1MTYZibfKiKR1LtJeBtoFhCoQQ5SnyI6P147hTG26y7_f8SVNNkCAEC9RZNWOe86X488n9mdCXoDkAvpSMMQusEGZcCaF7jMFcpBEKsoEOBHX9-lwmI1G-YfwoX3mjhNIjckuLvLT_-pqLENn262zf-HuRaNYgPfodLyi2_H6R44f7r-uqlnN7PjkNADUpGxoYSmmsvL5P5foOPmGNJzZvQ1nwlJPxIfdgmuQStbQAzP26wOQon6HWoxh7nWde-LkqJpO6nGQOm-UDqpWjtZBSoYzt3tIi_1fb1cT-HD3db4A597cFnxEuJ6LMJy6hDb4aPQFjKy6OYqY2816cZujWGyeaVcq-QykPfMmhN8QjLnTLf0xsPscwzH6xbi-Y79f2ifZj9Oxl7i-oZv9ybZvm7cibQNkmrfJcpzyHEPf8s7b3dG7xYCNc7rYSzL6_twlz9tlgL944M9pTIeaHN4n98Kcgu54LDwgt8A8JKsdpclHxFxDBW1RQStNO6igE0NvooJaVNAGFbRBBZWX9BoqaIuKx-Tz3u7hmwMWjtpgJRqoZgKn-TIROHvVQkeQR1mmE5WC0oqrOM64yCMJXEmZlK9kLsBqKEFSInsHqXBkeEKWTGVgjVD8WZSWVqZQOp0FrKsHvI-tJ1rnfVgncWO54tQrqhTNUsPjomPuwpq78OZeJ9uNjYtADT3lKxAgv6_-9N-qb5CVFtXPyBK-SrBJ7pRn9WQ23QpwugIeIpYr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NGBoost-based+prediction+of+carbonation+in+Alkali-activated+slag+concrete+enhanced+by+metaheuristic+algorithms&rft.jtitle=Construction+%26+building+materials&rft.au=Chen%2C+Yun&rft.au=Fu%2C+Qianwang&rft.au=Zheng%2C+Wenbo&rft.date=2025-11-21&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.volume=500&rft_id=info:doi/10.1016%2Fj.conbuildmat.2025.144257&rft.externalDocID=S0950061825044083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon