Parameterized Complexity of Geodetic Set

A vertex set $S$ of a graph $G$ is geodetic if every vertex of $G$ lies on a shortest path between two vertices in $S$. Given a graph $G$ and $k \in \mathbb{N}$, the NP-hard ${\rm G{\small EODETIC}~S{ \small ET}}$ problem asks whether there is a geodetic set of size at most $k$. Complementing variou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of graph algorithms and applications Vol. 26; no. 4; pp. 401 - 419
Main Authors: Kellerhals, Leon, Koana, Tomohiro
Format: Journal Article
Language:English
Published: 01.07.2022
ISSN:1526-1719, 1526-1719
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A vertex set $S$ of a graph $G$ is geodetic if every vertex of $G$ lies on a shortest path between two vertices in $S$. Given a graph $G$ and $k \in \mathbb{N}$, the NP-hard ${\rm G{\small EODETIC}~S{ \small ET}}$ problem asks whether there is a geodetic set of size at most $k$. Complementing various works on ${\rm G{\small EODETIC}~S{ \small ET}}$ restricted to special graph classes, we initiate a parameterized complexity study of ${\rm G{\small EODETIC}~S{ \small ET}}$ and show, on the one side, that ${\rm G{\small EODETIC}~S{ \small ET}}$ is $W[1]$-hard when parameterized by feedback vertex number, path-width, and solution size, combined. On the other side, we develop fixed-parameter algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the input graph.
AbstractList A vertex set $S$ of a graph $G$ is geodetic if every vertex of $G$ lies on a shortest path between two vertices in $S$. Given a graph $G$ and $k \in \mathbb{N}$, the NP-hard ${\rm G{\small EODETIC}~S{ \small ET}}$ problem asks whether there is a geodetic set of size at most $k$. Complementing various works on ${\rm G{\small EODETIC}~S{ \small ET}}$ restricted to special graph classes, we initiate a parameterized complexity study of ${\rm G{\small EODETIC}~S{ \small ET}}$ and show, on the one side, that ${\rm G{\small EODETIC}~S{ \small ET}}$ is $W[1]$-hard when parameterized by feedback vertex number, path-width, and solution size, combined. On the other side, we develop fixed-parameter algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the input graph.
Author Kellerhals, Leon
Koana, Tomohiro
Author_xml – sequence: 1
  givenname: Leon
  surname: Kellerhals
  fullname: Kellerhals, Leon
– sequence: 2
  givenname: Tomohiro
  surname: Koana
  fullname: Koana, Tomohiro
BookMark eNptj8FKxDAURYOM4Mzoxi_oUoSOeUmTtEspOgoDCuq6vKYvkqFthjQLx6_XURciru5dnHvhLNhsDCMxdg58ZUCpq-0r4opzzeGIzUEJnYOBavarn7DFNG05F1KYcs4uHjHiQImif6cuq8Ow6-nNp30WXLam0FHyNnuidMqOHfYTnf3kkr3c3jzXd_nmYX1fX29yC6WAHBwCVtpx1G1VFVISWdvqwigkIZ3tdEtQduhMV2hlpVSlKFTLoeC2rEwrl-zy-9fGME2RXLOLfsC4b4A3B8fm4Nh8OX7C_A9sfcLkw5gi-v6_yQeY31Ys
CitedBy_id crossref_primary_10_1016_j_disc_2025_114595
crossref_primary_10_1016_j_dam_2024_12_032
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.7155/jgaa.00601
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1526-1719
EndPage 419
ExternalDocumentID 10_7155_jgaa_00601
GroupedDBID -~9
29K
2WC
5GY
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
D-I
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c1821-1fa1a96f0a6b99433eeccb6475ae23fcd6be18daf7d465c3358245b0140c897b3
ISSN 1526-1719
IngestDate Tue Nov 18 01:55:57 EST 2025
Tue Nov 18 22:41:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1821-1fa1a96f0a6b99433eeccb6475ae23fcd6be18daf7d465c3358245b0140c897b3
OpenAccessLink https://doi.org/10.7155/jgaa.00601
PageCount 19
ParticipantIDs crossref_primary_10_7155_jgaa_00601
crossref_citationtrail_10_7155_jgaa_00601
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of graph algorithms and applications
PublicationYear 2022
SSID ssj0023278
Score 2.3789227
Snippet A vertex set $S$ of a graph $G$ is geodetic if every vertex of $G$ lies on a shortest path between two vertices in $S$. Given a graph $G$ and $k \in...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 401
Title Parameterized Complexity of Geodetic Set
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1526-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023278
  issn: 1526-1719
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1526-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023278
  issn: 1526-1719
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLbKMcCAOEU5qkgwgFAgh2PHI0JcElQditStshO7rVQSlBZUMfDbec4NdICBJYosv1yf_Q77vS8IHUub-6FvK9NRnJjY4cwULmYmWBPmWSG1lEyRfqDttt_rsU6jcV_UwryNaRT5sxl7-VeooQ3A1qWzf4C7vCg0wDmADkeAHY6_Ar7Ddb6VpmB-16u3OmVczvLEi1sZh7pqEVTElzX5mluaMlif8fEgTkbT4XNG4Vzf5q5UtK4iHML7pLG9rO3nxzyrNOvGz_FwlMT1pQWnSkMttaFDTJvmOk3OactVaFb0ng8VXNOHOL9cZlpxJvVda1PwabTWHnB-nvLDVLap2I__ZrLKREIIYbR0X8v2U9kFtORQj-nsvseP6zL2dp3UKJdPnzHVatmL6r4136TmZHTX0VoOg3GZobqBGjLaRKuPJbXuZAudfMHXqPA1YmUU-BqA7zZ6urnuXt2Z-e8uzACCPNu0Fbc5I8riRDCGXVfC9BIEU49Lx1VBSIS0_ZArGmLiBa6uccae0CFy4DMq3B20GMWR3EUGx0KAoxpwzafme4pZygoJES7MTMq8oIlOixftBzkXvP4lybj_84M20VHZ9yVjQJnTa-9XvfbRSjXODtDiNHmVh2g5eJuOJkkrXQ9ppbh9AltpUcw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Complexity+of+Geodetic+Set&rft.jtitle=Journal+of+graph+algorithms+and+applications&rft.au=Kellerhals%2C+Leon&rft.au=Koana%2C+Tomohiro&rft.date=2022-07-01&rft.issn=1526-1719&rft.eissn=1526-1719&rft.volume=26&rft.issue=4&rft.spage=401&rft.epage=419&rft_id=info:doi/10.7155%2Fjgaa.00601&rft.externalDBID=n%2Fa&rft.externalDocID=10_7155_jgaa_00601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1719&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1719&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1719&client=summon