Markov \alpha-Potential Games

We propose a new framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov <inline-formula><tex-math...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control s. 1 - 16
Hlavní autoři: Guo, Xin, Li, Xinyu, Maheshwari, Chinmay, Sastry, Shankar, Wu, Manxi
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a new framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential game, and establish the existence of an associated <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential function. Any optimizer of an <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential function is shown to be an <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games, with explicit characterization of an upper bound for <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula> and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula> for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2025.3589416