Markov \alpha-Potential Games
We propose a new framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov <inline-formula><tex-math...
Uložené v:
| Vydané v: | IEEE transactions on automatic control s. 1 - 16 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose a new framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential game, and establish the existence of an associated <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential function. Any optimizer of an <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential function is shown to be an <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-potential games, with explicit characterization of an upper bound for <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula> and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula> for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments. |
|---|---|
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2025.3589416 |