Solution of solid mechanic equilibrium problems by power series

The paper presents the application of power series to the numerical solution of equilibrium problems in elasticity. Complete bases of power series that satisfy the differential equations are developed, first for unidimensional problems like the equilibrium of a beam on elastic foundation, second for...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational methods and experimental measurements Vol. 3; no. 1; pp. 33 - 48
Main Authors: González, E., Sarrazin, M.
Format: Journal Article
Language:English
Published: Southampton W I T Press 31.03.2015
Subjects:
ISSN:2046-0546, 2046-0554
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents the application of power series to the numerical solution of equilibrium problems in elasticity. Complete bases of power series that satisfy the differential equations are developed, first for unidimensional problems like the equilibrium of a beam on elastic foundation, second for the harmonic differential equation in two dimensions, with application to the Saint-Venant’s torsion problem and, finally, for the biharmonic equation, which can be applied to plane elasticity problems as well as to the plate-bending problem. In the case of unidimensional problems the solution is exact, because the number of boundary conditions is equal to the number of parameters involved in the series expansion, whereas in the two-dimensional problems the solution satisfies exactly the differential equation but only approximately the boundary conditions. The approximation of the solution will depend on the number of points selected at the boundary. The method presented here can also be used for developing high-order finite elements of any number of nodes and boundary shapes using complete polynomial expansions that satisfy the differential equation. Selected practical applications are shown.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2046-0546
2046-0554
DOI:10.2495/CMEM-V3-N1-33-48