Faster deterministic algorithm for Co-Path Set

•We give a deterministic O⁎(2k)-time algorithm for Co-Path Set.•Our result improves the result of Zhang et al. for this problem which gave an O⁎(2.45k)-time algorithm.•The improved time complexity is achieved by showing that a bad branching is preceded by an application of a reduction rule. In the C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 180; s. 106335
Hlavní autor: Tsur, Dekel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2023
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•We give a deterministic O⁎(2k)-time algorithm for Co-Path Set.•Our result improves the result of Zhang et al. for this problem which gave an O⁎(2.45k)-time algorithm.•The improved time complexity is achieved by showing that a bad branching is preceded by an application of a reduction rule. In the Co-Path Set problem, the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k edges whose removal from G results in a graph in which every connected component is a path. In this paper we give a deterministic O⁎(2k)-time algorithm for Co-Path Set.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2022.106335