Monocular Visual Simultaneous Localization and Mapping: (R)Evolution From Geometry to Deep Learning-Based Pipelines

With the rise of deep learning, there is a fundamental change in visual simultaneous localization and mapping (SLAM) algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on artificial intelligence Ročník 5; číslo 5; s. 1990 - 2010
Hlavní autoři: Alvarez-Tunon, Olaya, Brodskiy, Yury, Kayacan, Erdal
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.05.2024
Témata:
ISSN:2691-4581, 2691-4581
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rise of deep learning, there is a fundamental change in visual simultaneous localization and mapping (SLAM) algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this article surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing a consistent classification of visual SLAM pipelines and a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.
AbstractList With the rise of deep learning, there is a fundamental change in visual simultaneous localization and mapping (SLAM) algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this article surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing a consistent classification of visual SLAM pipelines and a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.
Author Alvarez-Tunon, Olaya
Brodskiy, Yury
Kayacan, Erdal
Author_xml – sequence: 1
  givenname: Olaya
  orcidid: 0000-0003-3581-9481
  surname: Alvarez-Tunon
  fullname: Alvarez-Tunon, Olaya
  email: olaya@ece.au.dk
  organization: Artificial Intelligence in Robotics Laboratory (AiRLab), the Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
– sequence: 2
  givenname: Yury
  orcidid: 0009-0002-0445-8126
  surname: Brodskiy
  fullname: Brodskiy, Yury
  email: ybr@eiva.com
  organization: EIVA a/s, Skanderborg, Denmark
– sequence: 3
  givenname: Erdal
  orcidid: 0000-0002-7143-8777
  surname: Kayacan
  fullname: Kayacan, Erdal
  email: erdal.kayacan@uni-paderborn.de
  organization: Automatic Control Group (RAT), Paderborn University, Paderborn, Germany
BookMark eNp9kDtPwzAURi1UJErpzsDgEYYUP-I82EppS6VUIKhYI8e5QUapHdkJUvn19DVUDEz3k-53rnTPJeoZawCha0pGlJL0fjVejBhhfMQ5o4SzM9RnUUqDUCS0d5Iv0ND7L0IIE5QxFveRX1pjVVdLhz-072SN3_W6q1tpwHYeZ1bJWv_IVluDpSnxUjaNNp8P-Pbtbvpt626_mTm7xnOwa2jdBrcWPwE0OAPpzLYcPEoPJX7VDdTagL9C55WsPQyPc4BWs-lq8hxkL_PFZJwFisZpG4DggrBUsUJFwGWqaJWSqCyKilFgIqZFQaIqFKEq4qQoyypNuJCRLEVM0jDhAxQdzipnvXdQ5Uq3-09aJ3WdU5Lv5OVbeflOXn6UtwXJH7Bxei3d5j_k5oBoADipsyghIua_A859cg
CODEN ITAICB
CitedBy_id crossref_primary_10_3390_jmse12030428
crossref_primary_10_1109_TIM_2024_3462997
crossref_primary_10_1111_mice_13403
Cites_doi 10.1109/CVPR.2017.690
10.1145/3503250
10.1007/BF00131148
10.1109/TAI.2022.3170001
10.5555/777092.777184
10.1177/0278364918784361
10.1016/j.patcog.2021.108225
10.1007/978-3-030-01270-0_50
10.1177/0278364908090961
10.1109/IROS.2012.6385773
10.1109/TSMC.2018.2804766
10.1109/ACCESS.2019.2928578
10.1109/ACCESS.2020.2983121
10.1007/BF00129684
10.1109/ICCRE49379.2020.9096497
10.1109/AINL-ISMW-FRUCT.2015.7382963
10.1109/TRO.2017.2705103
10.5244/c.27.13
10.1109/ICRA40945.2020.9197374
10.1109/CVPR.2017.699
10.4324/9781410605337-29
10.1109/34.601246
10.1109/TPAMI.2011.222
10.1109/CVPR.2017.695
10.1109/TAI.2021.3076021
10.1145/504729.504754
10.1109/ICCV.2003.1238663
10.1007/978-3-031-31438-4_5
10.1007/s10846-014-0029-6
10.1109/TPAMI.2007.1049
10.1109/ICRA.2014.6906584
10.1109/IROS40897.2019.8967726
10.1109/ICRA40945.2020.9196638
10.1109/LRA.2022.3142901
10.1007/978-3-030-69538-5_21
10.1109/ACCTCS52002.2021.00047
10.1145/3240508.3240525
10.1109/CVPR.2019.00342
10.1109/LRA.2021.3094228
10.1001/jama.284.15.1980
10.1007/978-3-319-46466-4_28
10.1109/TPAMI.2017.2658577
10.1109/IROS.2018.8593691
10.1109/CVPR46437.2021.00284
10.1109/34.206955
10.48550/ARXIV.1706.03762
10.1109/3DV53792.2021.00025
10.1109/TITS.2018.2866637
10.1007/978-3-319-10605-2_54
10.1109/ICRA40945.2020.9196900
10.1109/ICCV48922.2021.00617
10.1109/ACCESS.2019.2952161
10.3390/rs14081854
10.1177/0278364919883346
10.1109/ICPR.2014.698
10.1007/s12559-018-9591-8
10.1109/lcsys.2023.3340619
10.1109/iros55552.2023.10341922
10.1109/ICRA48506.2021.9561230
10.1109/IROS45743.2020.9341801
10.1109/ACCESS.2019.2904512
10.48550/ARXIV.1807.06521
10.1109/CVPR42600.2020.00917
10.1109/IROS40897.2019.8967919
10.1109/IROS40897.2019.8967590
10.1007/978-3-030-30683-0_11
10.1109/TRO.2021.3075644
10.1109/CVPR.2019.01238
10.1109/CVPR.2004.1315094
10.1109/ICRA.2017.7989236
10.1016/j.neucom.2021.05.027
10.1109/MRA.2011.943233
10.1109/CVPR.2019.00987
10.1109/ICCV.2015.316
10.1609/aaai.v34i06.6608
10.1109/ACCESS.2021.3050617
10.1145/358669.358692
10.1109/icra40945.2020.9197519
10.1109/CVPR.2018.00931
10.1007/s41651-020-00048-5
10.1109/LRA.2022.3150854
10.1109/ICCV.2019.00393
10.1109/LRA.2018.2859916
10.1177/0278364916679498
10.1109/ICCV.2011.6126544
10.1109/IROS40897.2019.8968008
10.1109/ICRA.2018.8460816
10.1145/3177853
10.1109/9.855552
10.1109/MAJICC53071.2021.9526266
10.1007/s11263-008-0152-6
10.1109/LRA.2018.2849609
10.1109/icra46639.2022.9812162
10.1109/ICAIBD51990.2021.9459086
10.1109/TPAMI.2016.2644615
10.1177/02783649221078612
10.1016/j.robot.2017.09.010
10.1007/978-3-031-20080-9_14
10.1109/TRO.2015.2463671
10.1177/1729881420919185
10.1109/TRO.2018.2853729
10.1109/TAI.2022.3194869
10.1109/TITS.2022.3175656
10.1109/IROS.2018.8593376
10.1007/s10851-009-0161-2
10.1109/ROBIO55434.2022.10011660
10.1109/CVPR52688.2022.00675
10.1109/TCDS.2020.3038898
10.1109/TPAMI.2003.1217599
10.1177/0278364915620033
10.1109/ICCV.2019.00775
10.1109/TPAMI.2004.17
10.1109/ROBOT.2010.5509636
10.1016/j.patcog.2019.107193
10.1109/CVPR.2019.00589
10.1016/j.neucom.2022.06.118
10.1007/978-3-030-20876-9_19
10.1109/CVPR.2016.572
10.1007/978-981-10-6370-1_41
10.1109/TRO.2012.2197158
10.1109/ICCV48922.2021.00619
10.1109/ICCV.2017.322
10.1007/978-3-030-27532-7_14
10.1109/CVPR.2018.00021
10.1109/ICRA.2019.8793836
10.1109/ICCV.2011.6126513
10.1109/CVPR.2018.00884
10.1109/ICRA.2018.8461251
10.1109/MRA.2014.2322282
10.1109/CVPR.2012.6248074
10.1109/ICCV.2017.447
10.1109/ICRA.2019.8793749
10.1109/ISMAR.2007.4538852
10.1109/TRO.2019.2909168
10.1186/s41074-017-0027-2
10.1109/TRO.2016.2624754
10.1109/ICCV48922.2021.00584
10.1109/LRA.2021.3058069
10.1109/TITS.2021.3074520
10.1109/LRA.2018.2803211
10.1109/CVPRW.2018.00060
10.1109/LRA.2018.2860039
10.1109/iros55552.2023.10341436
10.1016/j.vrih.2019.09.001
10.1109/LRA.2018.2793349
10.1109/IROS45743.2020.9340907
10.1109/ICRA.2015.7139836
10.1109/IROS.2015.7353389
10.1109/CVPR42600.2020.00136
10.5244/C.19.50
10.1109/CVPR.2017.700
10.1109/LRA.2020.2965415
10.1109/LRA.2020.2965893
10.1109/ICIP.2019.8802931
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2023.3321032
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 2010
ExternalDocumentID 10_1109_TAI_2023_3321032
10268057
Genre orig-research
GrantInformation_xml – fundername: European Union's EU Framework Programme for Research and Innovation Horizon 2020 through REMARO Project
  grantid: 956200
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c179t-e535029c2bc6e3a9c1f906dbbf21e2571bb06f454cb78bddf9835a6ad5709483
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:41:00 EST 2025
Tue Nov 18 22:31:16 EST 2025
Wed Aug 27 07:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c179t-e535029c2bc6e3a9c1f906dbbf21e2571bb06f454cb78bddf9835a6ad5709483
ORCID 0000-0003-3581-9481
0000-0002-7143-8777
0009-0002-0445-8126
PageCount 21
ParticipantIDs crossref_citationtrail_10_1109_TAI_2023_3321032
ieee_primary_10268057
crossref_primary_10_1109_TAI_2023_3321032
PublicationCentury 2000
PublicationDate 2024-May
2024-5-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref56
Lucas (ref41) 1981
ref59
ref58
ref53
ref52
ref55
ref168
ref54
ref169
Christiansen (ref32) 2019
Simonyan (ref119) 2014
Grisetti (ref155) 2011
ref170
ref177
ref178
ref51
Velikovi (ref114) 2017
ref175
ref50
ref176
ref173
ref174
ref172
ref46
Tomasi (ref42) 1991; 9
ref45
ref48
ref47
ref44
ref43
ref49
ref8
ref180
ref7
ref9
ref3
ref6
ref5
ref100
ref101
ref40
Jaderberg (ref163) 2015; 28
ref35
ref34
ref37
Zhang (ref70) 2020
ref36
ref31
ref148
ref30
ref149
ref33
ref147
ref39
ref38
Cohen (ref105) 2016
ref156
ref153
ref154
ref151
ref152
ref150
ref24
Cohen (ref106) 2018
ref23
ref26
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
Hutchinson (ref109)
ref29
ref166
Tun (ref146) 2023
ref167
ref164
(ref171) 2021
Krizhevsky (ref118) 2012; 25
ref165
ref162
ref160
ref161
ref13
ref12
ref15
ref128
ref14
ref129
ref97
Welling (ref115) 2016
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
Aulinas (ref4); 184
ref17
ref16
ref19
ref18
Heyden (ref57) 2005; 3
Teed (ref139) 2021; 34
ref93
ref133
ref92
ref134
ref95
ref131
ref132
Tallec (ref107) 2018
ref91
ref90
ref89
ref86
ref137
ref85
ref138
ref88
ref87
Bian (ref94) 2019; 32
ref136
Grupp (ref179) 2017
ref82
ref144
ref81
ref145
ref84
ref142
ref83
Wang (ref130) 2020
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref75
ref74
ref77
ref102
ref76
ref103
Keriven (ref111) 2019; 32
ref2
ref1
Eigen (ref181) 2014; 27
Bronstein (ref104) 2021
ref71
ref112
ref73
ref72
ref110
He (ref135) 2015; 3385
Li (ref125) 2021
ref68
ref67
Yuan (ref116) 2020
ref117
ref69
ref64
ref63
ref66
ref113
ref65
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – year: 2021
  ident: ref104
  article-title: Geometric deep learning: Grids, groups, graphs, geodesics, and gauges
– ident: ref46
  doi: 10.1109/CVPR.2017.690
– ident: ref158
  doi: 10.1145/3503250
– ident: ref100
  doi: 10.1007/BF00131148
– ident: ref113
  doi: 10.1109/TAI.2022.3170001
– ident: ref162
  doi: 10.5555/777092.777184
– ident: ref102
  doi: 10.1177/0278364918784361
– ident: ref72
  doi: 10.1016/j.patcog.2021.108225
– ident: ref138
  doi: 10.1007/978-3-030-01270-0_50
– ident: ref74
  doi: 10.1177/0278364908090961
– ident: ref167
  doi: 10.1109/IROS.2012.6385773
– ident: ref174
  doi: 10.1109/TSMC.2018.2804766
– ident: ref36
  doi: 10.1109/ACCESS.2019.2928578
– ident: ref25
  doi: 10.1109/ACCESS.2020.2983121
– volume: 27
  start-page: 2366
  volume-title: Proc. 28th Annu. Conf. Neural Inf. Process. Syst.
  year: 2014
  ident: ref181
  article-title: Depth map prediction from a single image using a multi-scale deep network
– volume: 9
  start-page: 137
  year: 1991
  ident: ref42
  article-title: Detection and tracking of point
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00129684
– ident: ref58
  doi: 10.1109/ICCRE49379.2020.9096497
– ident: ref81
  doi: 10.1109/AINL-ISMW-FRUCT.2015.7382963
– ident: ref96
  doi: 10.1109/TRO.2017.2705103
– ident: ref23
  doi: 10.5244/c.27.13
– ident: ref61
  doi: 10.1109/ICRA40945.2020.9197374
– ident: ref93
  doi: 10.1109/CVPR.2017.699
– ident: ref128
  doi: 10.4324/9781410605337-29
– ident: ref56
  doi: 10.1109/34.601246
– ident: ref21
  doi: 10.1109/TPAMI.2011.222
– ident: ref71
  doi: 10.1109/CVPR.2017.695
– volume: 34
  start-page: 16558
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2021
  ident: ref139
  article-title: Droid-SLAM: Deep visual SLAM for monocular, stereo, and RGB-D cameras
– ident: ref110
  doi: 10.1109/TAI.2021.3076021
– ident: ref77
  doi: 10.1145/504729.504754
– ident: ref62
  doi: 10.1109/ICCV.2003.1238663
– ident: ref144
  doi: 10.1007/978-3-031-31438-4_5
– ident: ref82
  doi: 10.1007/s10846-014-0029-6
– ident: ref40
  doi: 10.1109/TPAMI.2007.1049
– year: 2017
  ident: ref114
  article-title: Graph attention networks
– ident: ref38
  doi: 10.1109/ICRA.2014.6906584
– ident: ref65
  doi: 10.1109/IROS40897.2019.8967726
– ident: ref169
  doi: 10.1109/ICRA40945.2020.9196638
– start-page: 1
  volume-title: Proc. 8th Int. Conf. Learn. Representations
  year: 2020
  ident: ref116
  article-title: StructPool: Structured graph pooling via conditional random fields
– ident: ref122
  doi: 10.1109/LRA.2022.3142901
– ident: ref143
  doi: 10.1007/978-3-030-69538-5_21
– ident: ref47
  doi: 10.1109/ACCTCS52002.2021.00047
– start-page: 9
  volume-title: Proc. IEEE Int. Conf. Robot. Automat.
  year: 2011
  ident: ref155
  article-title: g2o: A general framework for (hyper) graph optimization
– ident: ref120
  doi: 10.1145/3240508.3240525
– ident: ref141
  doi: 10.1109/CVPR.2019.00342
– ident: ref67
  doi: 10.1109/LRA.2021.3094228
– ident: ref127
  doi: 10.1001/jama.284.15.1980
– volume-title: Proc. Int. Symp. Robot.
  year: 2023
  ident: ref146
  article-title: Loss it right: Euclidean and Riemannian metrics in learning-based visual odometry
– ident: ref29
  doi: 10.1007/978-3-319-46466-4_28
– ident: ref39
  doi: 10.1109/TPAMI.2017.2658577
– ident: ref48
  doi: 10.1109/IROS.2018.8593691
– ident: ref161
  doi: 10.1109/CVPR46437.2021.00284
– ident: ref34
  doi: 10.1109/34.206955
– ident: ref108
  doi: 10.48550/ARXIV.1706.03762
– ident: ref124
  doi: 10.1109/3DV53792.2021.00025
– ident: ref85
  doi: 10.1109/TITS.2018.2866637
– ident: ref35
  doi: 10.1007/978-3-319-10605-2_54
– ident: ref92
  doi: 10.1109/ICRA40945.2020.9196900
– ident: ref159
  doi: 10.1109/ICCV48922.2021.00617
– ident: ref49
  doi: 10.1109/ACCESS.2019.2952161
– ident: ref148
  doi: 10.3390/rs14081854
– ident: ref175
  doi: 10.1177/0278364919883346
– ident: ref97
  doi: 10.1109/ICPR.2014.698
– year: 2021
  ident: ref125
  article-title: TranscCamp: Graph transformer for 6-dof camera pose estimation
– ident: ref17
  doi: 10.1007/s12559-018-9591-8
– ident: ref157
  doi: 10.1109/lcsys.2023.3340619
– ident: ref160
  doi: 10.1109/iros55552.2023.10341922
– volume: 32
  start-page: 7092
  volume-title: Proc. 33rd Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref111
  article-title: Universal invariant and equivariant graph neural networks
– ident: ref87
  doi: 10.1109/ICRA48506.2021.9561230
– ident: ref177
  doi: 10.1109/IROS45743.2020.9341801
– ident: ref84
  doi: 10.1109/ACCESS.2019.2904512
– ident: ref151
  doi: 10.48550/ARXIV.1807.06521
– ident: ref153
  doi: 10.1109/CVPR42600.2020.00917
– ident: ref133
  doi: 10.1109/IROS40897.2019.8967919
– ident: ref170
  doi: 10.1109/IROS40897.2019.8967590
– ident: ref10
  doi: 10.1007/978-3-030-30683-0_11
– ident: ref63
  doi: 10.1109/TRO.2021.3075644
– ident: ref83
  doi: 10.1109/CVPR.2019.01238
– ident: ref20
  doi: 10.1109/CVPR.2004.1315094
– ident: ref129
  doi: 10.1109/ICRA.2017.7989236
– volume-title: Proc. J. Int. Conf. Learn. Representations
  year: 2016
  ident: ref115
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref30
  doi: 10.1016/j.neucom.2021.05.027
– ident: ref11
  doi: 10.1109/MRA.2011.943233
– ident: ref27
  doi: 10.1109/CVPR.2019.00987
– ident: ref132
  doi: 10.1109/ICCV.2015.316
– ident: ref136
  doi: 10.1609/aaai.v34i06.6608
– ident: ref53
  doi: 10.1109/ACCESS.2021.3050617
– ident: ref43
  doi: 10.1145/358669.358692
– ident: ref165
  doi: 10.1109/icra40945.2020.9197519
– ident: ref134
  doi: 10.1109/CVPR.2018.00931
– year: 2020
  ident: ref130
  article-title: TartanVO: A generalizable learning-based VO
– ident: ref103
  doi: 10.1007/s41651-020-00048-5
– year: 2014
  ident: ref119
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref150
  doi: 10.1109/LRA.2022.3150854
– ident: ref95
  doi: 10.1109/ICCV.2019.00393
– ident: ref123
  doi: 10.1109/LRA.2018.2859916
– ident: ref173
  doi: 10.1177/0278364916679498
– ident: ref22
  doi: 10.1109/ICCV.2011.6126544
– start-page: 2990
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2016
  ident: ref105
  article-title: Group equivariant convolutional networks
– ident: ref37
  doi: 10.1109/IROS40897.2019.8968008
– ident: ref73
  doi: 10.1109/ICRA.2018.8460816
– ident: ref9
  doi: 10.1145/3177853
– volume: 28
  start-page: 2017
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2015
  ident: ref163
  article-title: Spatial transformer networks
– ident: ref3
  doi: 10.1109/9.855552
– ident: ref1
  doi: 10.1109/MAJICC53071.2021.9526266
– ident: ref60
  doi: 10.1007/s11263-008-0152-6
– ident: ref68
  doi: 10.1109/LRA.2018.2849609
– ident: ref90
  doi: 10.1109/icra46639.2022.9812162
– volume: 184
  start-page: 363
  volume-title: Proc. Conf. Artif. Intell. Res. Develop.
  ident: ref4
  article-title: The SLAM problem: A survey
– ident: ref45
  doi: 10.1109/ICAIBD51990.2021.9459086
– ident: ref50
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref176
  doi: 10.1177/02783649221078612
– ident: ref5
  doi: 10.1016/j.robot.2017.09.010
– ident: ref126
  doi: 10.1007/978-3-031-20080-9_14
– ident: ref28
  doi: 10.1109/TRO.2015.2463671
– ident: ref18
  doi: 10.1177/1729881420919185
– ident: ref24
  doi: 10.1109/TRO.2018.2853729
– ident: ref112
  doi: 10.1109/TAI.2022.3194869
– ident: ref13
  doi: 10.1109/TITS.2022.3175656
– year: 2019
  ident: ref32
  article-title: Unsuperpoint: End-to-end unsupervised interest point detector and descriptor
– ident: ref75
  doi: 10.1109/IROS.2018.8593376
– ident: ref180
  doi: 10.1007/s10851-009-0161-2
– start-page: 674
  year: 1981
  ident: ref41
  article-title: An iterative image registration technique with an application to stereo vision
– ident: ref147
  doi: 10.1109/ROBIO55434.2022.10011660
– volume: 32
  start-page: 35
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2019
  ident: ref94
  article-title: Unsupervised scale-consistent depth and ego-motion learning from monocular video
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref106
  article-title: Spherical CNNs
– ident: ref142
  doi: 10.1109/CVPR52688.2022.00675
– ident: ref12
  doi: 10.1109/TCDS.2020.3038898
– volume: 25
  start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2012
  ident: ref118
  article-title: Imagenet classification with deep convolutional neural networks
– ident: ref59
  doi: 10.1109/TPAMI.2003.1217599
– ident: ref166
  doi: 10.1177/0278364915620033
– ident: ref168
  doi: 10.1109/ICCV.2019.00775
– ident: ref55
  doi: 10.1109/TPAMI.2004.17
– ident: ref76
  doi: 10.1109/ROBOT.2010.5509636
– ident: ref88
  doi: 10.1016/j.patcog.2019.107193
– year: 2021
  ident: ref171
  article-title: The ETH-Microsoft localization dataset
– ident: ref145
  doi: 10.1109/CVPR.2019.00589
– ident: ref140
  doi: 10.1016/j.neucom.2022.06.118
– start-page: 4533
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref109
  article-title: LieTransformer: Equivariant self-attention for lie groups
– ident: ref137
  doi: 10.1007/978-3-030-20876-9_19
– ident: ref117
  doi: 10.1109/CVPR.2016.572
– ident: ref16
  doi: 10.1007/978-981-10-6370-1_41
– ident: ref64
  doi: 10.1109/TRO.2012.2197158
– year: 2017
  ident: ref179
  article-title: EVO: Python package for the evaluation of odometry and SLAM
– ident: ref154
  doi: 10.1109/ICCV48922.2021.00619
– ident: ref52
  doi: 10.1109/ICCV.2017.322
– ident: ref2
  doi: 10.1007/978-3-030-27532-7_14
– ident: ref99
  doi: 10.1109/CVPR.2018.00021
– ident: ref86
  doi: 10.1109/ICRA.2019.8793836
– ident: ref33
  doi: 10.1109/ICCV.2011.6126513
– ident: ref164
  doi: 10.1109/CVPR.2018.00884
– ident: ref91
  doi: 10.1109/ICRA.2018.8461251
– ident: ref15
  doi: 10.1109/MRA.2014.2322282
– ident: ref172
  doi: 10.1109/CVPR.2012.6248074
– ident: ref54
  doi: 10.1109/ICCV.2017.447
– ident: ref98
  doi: 10.1109/ICRA.2019.8793749
– ident: ref19
  doi: 10.1109/ISMAR.2007.4538852
– ident: ref44
  doi: 10.1109/TRO.2019.2909168
– ident: ref6
  doi: 10.1186/s41074-017-0027-2
– ident: ref7
  doi: 10.1109/TRO.2016.2624754
– ident: ref156
  doi: 10.1109/ICCV48922.2021.00584
– ident: ref26
  doi: 10.1109/LRA.2021.3058069
– ident: ref69
  doi: 10.1109/TITS.2021.3074520
– ident: ref131
  doi: 10.1109/LRA.2018.2803211
– year: 2018
  ident: ref107
  article-title: Can recurrent neural networks warp time?
– ident: ref31
  doi: 10.1109/CVPRW.2018.00060
– ident: ref51
  doi: 10.1109/LRA.2018.2860039
– ident: ref178
  doi: 10.1109/iros55552.2023.10341436
– ident: ref8
  doi: 10.1016/j.vrih.2019.09.001
– ident: ref79
  doi: 10.1109/LRA.2018.2793349
– ident: ref66
  doi: 10.1109/IROS45743.2020.9340907
– ident: ref14
  doi: 10.1109/ICRA.2015.7139836
– ident: ref78
  doi: 10.1109/IROS.2015.7353389
– ident: ref149
  doi: 10.1109/CVPR42600.2020.00136
– volume: 3385
  year: 2015
  ident: ref135
  article-title: Deep residual learning for image recognition
  publication-title: CoRR
– ident: ref80
  doi: 10.5244/C.19.50
– volume: 3
  start-page: 45
  year: 2005
  ident: ref57
  article-title: Multiple view geometry
  publication-title: Emerg. Topics Comput. Vis.
– ident: ref152
  doi: 10.1109/CVPR.2017.700
– ident: ref89
  doi: 10.1109/LRA.2020.2965415
– ident: ref101
  doi: 10.1109/LRA.2020.2965893
– year: 2020
  ident: ref70
  article-title: VDO-SLAM: A visual dynamic object-aware SLAM system
– ident: ref121
  doi: 10.1109/ICIP.2019.8802931
SSID ssj0002512227
Score 2.275674
Snippet With the rise of deep learning, there is a fundamental change in visual simultaneous localization and mapping (SLAM) algorithms toward developing different...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1990
SubjectTerms Cameras
Deep learning
Feature extraction
Optimization
Pipelines
robot vision systems
Simultaneous localization and mapping
Surveys
visual odometry
Visualization
Title Monocular Visual Simultaneous Localization and Mapping: (R)Evolution From Geometry to Deep Learning-Based Pipelines
URI https://ieeexplore.ieee.org/document/10268057
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6sePBifVSsL_bgwR5S0zx2s958tCpUKVrEW9hkJyVgk9Kmghd_u7PJttSDgpcQwgyEfDuZmd35Zgg5w8xf-oxzy5MOXpjvWkJ4rpWASHzJdBVP2cS1z5-egrc3MTBk9ZILAwBl8Rm09W15lq_yeK63ytDCHRZggFEjNc5ZRdZabqhoR-04fHEUaYuL4dVDW08Hb7uaqOI6P1zPyiyV0pX06v98iW2yZWJGelWBvEPWINsl9cU8BmrMc4_M0EDzsq6UvqazOaq8pLpgUGaA-T3ta7dlaJdUZoo-St2cYXRJz59b3Q-zBmlvmo_pHeRjKKaftMjpLcCEmj6sI-sa3Z6ig3Siiewwa5Bhrzu8ubfMUAUrRtsrLPBd33ZE7EQxA1eKuJMIm6koSpwOoP12oshmied7ccSDSKlEYIwmmVQ-x0wwcPfJepZncEBo1NHiCDSDxJNCBZwDcMUwRcLfQCKb5GLxucPYNBzXcy_ewzLxsEWIAIUaoNAA1CStpcakarbxh2xDY7MiV8Fy-MvzI7KJ6l5Vq3hM1ovpHE7IRvxRpLPpKak9fnVPywX1DdhpyLQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SXDhjRjPHDjAoaNL26ThxmtsYkwIJsStSht3msTaaeuQ-Pc4bYbgABKXqqqcqsoX13bizybkBCN_FXAhHF8xvPDAc6T0PScFmQaKmyyesohrR3S74eurfLRk9ZILAwBl8hnUzW15lq_zZGq2ylDDGQ_RwZgni4HvM7eia31tqRhTzZiYHUa68rx32a6b_uB1z1BVPPbD-HzrplIak-baPz9jnaxar5FeVjBvkDnINsnarCMDtQq6RSaoonmZWUpfBpMpDnkemJRBlQFG-LRjDJclXlKVafqgTHmG_gU9fTq7fberkDbH-ZDeQT6EYvxBi5zeAIyorcTad67Q8Gn6OBgZKjtMtkmvedu7bjm2rYKToPYVDgRe4DKZsDjh4CmZNFLpch3HKWsAanAjjl2e-oGfxCKMtU4lemmKKx0IjAVDb4csZHkGu4TGDSOOUHNIfSV1KASA0ByDJPwRpKpGzmfTHSW25LjpfPEWlaGHKyMEKDIARRagGjn7GjGqym38IbttsPkmV8Gy98vzY7Lc6j10ok67e79PVvBVfpW5eEAWivEUDslS8l4MJuOjcll9Aq9uyso
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monocular+Visual+Simultaneous+Localization+and+Mapping%3A+%28R%29Evolution+From+Geometry+to+Deep+Learning-Based+Pipelines&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=%C3%81lvarez-Tu%C3%B1%C3%B3n%2C+Olaya&rft.au=Brodskiy%2C+Yury&rft.au=Kayacan%2C+Erdal&rft.date=2024-05-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=5&rft.issue=5&rft.spage=1990&rft.epage=2010&rft_id=info:doi/10.1109%2FTAI.2023.3321032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2023_3321032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon