Migrant Resettlement by Evolutionary Multiobjective Optimization

Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific resear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on artificial intelligence Ročník 6; číslo 1; s. 51 - 65
Hlavní autoři: Liu, Dan-Xuan, Gu, Yu-Ran, Qian, Chao, Mu, Xin, Tang, Ke
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2025
Témata:
ISSN:2691-4581, 2691-4581
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific research attention, from the perspective of maximizing the employment rate. Previous works mainly formulated migrant resettlement as an approximately submodular optimization problem subject to multiple matroid constraints and employed the greedy algorithm, whose performance, however, may be limited due to its greedy nature. In this article, we propose a new framework called migrant resettlement by evolutionary multiobjective optimization (MR-EMO), which reformulates migrant resettlement as a biobjective optimization problem that maximizes the expected number of employed migrants and minimizes the number of dispatched migrants simultaneously, and employs a multiobjective evolutionary algorithm (MOEA) to solve the biobjective problem. We implement MR-EMO using three MOEAs: the popular nondominated sorting genetic algorithm II (NSGA-II), MOEA based on decomposition (MOEA/D) as well as the theoretically grounded global simple evolutionary multiobjective optimizer (GSEMO). To further improve the performance of MR-EMO, we propose a specific MOEA, called GSEMO using matrix-swap mutation and repair mechanism (GSEMO-SR), which has a better ability to search for feasible solutions. We prove that MR-EMO using either GSEMO or GSEMO-SR can achieve better theoretical guarantees than the previous greedy algorithm. Experimental results under the interview and coordination migration models clearly show the superiority of MR-EMO (with either NSGA-II, MOEA/D, GSEMO or GSEMO-SR) over previous algorithms, and that using GSEMO-SR leads to the best performance of MR-EMO.
AbstractList Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific research attention, from the perspective of maximizing the employment rate. Previous works mainly formulated migrant resettlement as an approximately submodular optimization problem subject to multiple matroid constraints and employed the greedy algorithm, whose performance, however, may be limited due to its greedy nature. In this article, we propose a new framework called migrant resettlement by evolutionary multiobjective optimization (MR-EMO), which reformulates migrant resettlement as a biobjective optimization problem that maximizes the expected number of employed migrants and minimizes the number of dispatched migrants simultaneously, and employs a multiobjective evolutionary algorithm (MOEA) to solve the biobjective problem. We implement MR-EMO using three MOEAs: the popular nondominated sorting genetic algorithm II (NSGA-II), MOEA based on decomposition (MOEA/D) as well as the theoretically grounded global simple evolutionary multiobjective optimizer (GSEMO). To further improve the performance of MR-EMO, we propose a specific MOEA, called GSEMO using matrix-swap mutation and repair mechanism (GSEMO-SR), which has a better ability to search for feasible solutions. We prove that MR-EMO using either GSEMO or GSEMO-SR can achieve better theoretical guarantees than the previous greedy algorithm. Experimental results under the interview and coordination migration models clearly show the superiority of MR-EMO (with either NSGA-II, MOEA/D, GSEMO or GSEMO-SR) over previous algorithms, and that using GSEMO-SR leads to the best performance of MR-EMO.
Author Tang, Ke
Liu, Dan-Xuan
Qian, Chao
Mu, Xin
Gu, Yu-Ran
Author_xml – sequence: 1
  givenname: Dan-Xuan
  orcidid: 0000-0002-7076-823X
  surname: Liu
  fullname: Liu, Dan-Xuan
  email: liudx@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Yu-Ran
  orcidid: 0000-0002-1539-9988
  surname: Gu
  fullname: Gu, Yu-Ran
  email: guyr@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0001-6011-2512
  surname: Qian
  fullname: Qian, Chao
  email: qianc@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-2747-5677
  surname: Mu
  fullname: Mu, Xin
  email: mux@pcl.ac.cn
  organization: Peng Cheng Laboratory, Shenzhen, China
– sequence: 5
  givenname: Ke
  orcidid: 0000-0002-6236-2002
  surname: Tang
  fullname: Tang, Ke
  email: tangk3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kEFrwkAQhZdiodZ676GH_IGks7Prxr1VxLaCIhR7DrvZSVmJiSSrYH99Y_UgPfQ0b5h5M4_vnvWquiLGHjkknIN-Xk_mCQLKREgpUg03rI9K81iOxrx3pe_YsG03AIAjjohpn70s_VdjqhB9UEshlLSlrrHHaHaoy33wdWWaY7Tcl520G8qDP1C02gW_9d_mNH5gt4UpWxpe6oB9vs7W0_d4sXqbTyeLOOepDrHT40JycM4UHBVqwZW0BBrQkR2R1k7KHKWVKVjhzNgq6PY55soppcCIAYPz3byp27ahIts1ftuFyzhkJwhZByE7QcguEDqL-mPJffgNHRrjy_-MT2ejJ6KrP0ooFCB-ACQya_U
CODEN ITAICB
CitedBy_id crossref_primary_10_1016_j_artint_2025_104308
Cites_doi 10.1007/s11633-020-1253-0
10.1007/978-3-642-16544-3
10.1016/j.artint.2021.103597
10.1109/TEVC.2007.892759
10.1007/978-3-030-29414-4
10.1109/TEVC.2015.2501315
10.1007/978-981-13-5956-9
10.1109/TEVC.2019.2929555
10.1287/moor.1100.0463
10.1137/080733991
10.1162/EVCO_a_00159
10.1109/TEVC.2022.3144880
10.1609/aaai.v36i9.21283
10.1109/TEVC.2021.3076514
10.1007/978-1-4757-5184-0
10.1109/TEVC.2023.3314152
10.1007/s11047-006-9004-x
10.1016/j.artint.2019.06.005
10.1609/aaai.v33i01.3301549
10.1609/aaai.v33i01.33012296
10.1007/978-3-030-58112-1_28
10.1007/s11432-023-3864-6
10.1007/978-3-031-14721-0_30
10.1126/sciadv.aap9519
10.1109/TCYB.2019.2930979
10.2307/3001968
10.1109/CEC.2003.1299908
10.1007/978-3-031-14721-0_28
10.1162/evco_a_00288
10.1609/aaai.v37i10.26461
10.1007/3-540-44719-9_19
10.1145/3512290.3528847
10.1109/TEVC.2004.823470
10.5555/1248547.1248548
10.1126/science.aao4408
10.1007/BF01588971
10.1515/jgd-2019-0006
10.1111/ecoj.12077
10.1109/4235.996017
10.1257/aer.103.5.1925
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2024.3443790
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 65
ExternalDocumentID 10_1109_TAI_2024_3443790
10636230
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 62276124; 62106114
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c179t-d98f410ddaf126293164be0902deb5e99d44c24b470b3da8b60f4112c6d6660a3
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Tue Nov 18 21:31:46 EST 2025
Sat Nov 29 07:35:49 EST 2025
Wed Aug 27 07:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c179t-d98f410ddaf126293164be0902deb5e99d44c24b470b3da8b60f4112c6d6660a3
ORCID 0000-0002-2747-5677
0000-0002-1539-9988
0000-0001-6011-2512
0000-0002-6236-2002
0000-0002-7076-823X
PageCount 15
ParticipantIDs crossref_primary_10_1109_TAI_2024_3443790
crossref_citationtrail_10_1109_TAI_2024_3443790
ieee_primary_10636230
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
Maaten (ref43) 2008; 9
(ref42) 2021
ref46
ref45
ref48
Qian (ref38) 2017
ref47
ref44
ref49
ref8
ref9
Qian (ref35) 2015
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
(ref21) 2019
Horel (ref18) 2016
ref24
Bäck (ref1) 1996
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Ruhs (ref41) 2015
Delacrétaz (ref7) 2016
References_xml – year: 2021
  ident: ref42
  article-title: Global Trends: Forced Displacement in 2020
– ident: ref17
  doi: 10.1007/s11633-020-1253-0
– volume-title: Genetic Algorithms
  year: 1996
  ident: ref1
  article-title: Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming
– ident: ref32
  doi: 10.1007/978-3-642-16544-3
– ident: ref40
  doi: 10.1016/j.artint.2021.103597
– ident: ref46
  doi: 10.1109/TEVC.2007.892759
– ident: ref10
  doi: 10.1007/978-3-030-29414-4
– ident: ref26
  doi: 10.1109/TEVC.2015.2501315
– year: 2015
  ident: ref41
  article-title: The labour market effects of immigration
  publication-title: Migration Observatory
– ident: ref49
  doi: 10.1007/978-981-13-5956-9
– ident: ref36
  doi: 10.1109/TEVC.2019.2929555
– ident: ref24
  doi: 10.1287/moor.1100.0463
– year: 2019
  ident: ref21
  article-title: World Migration Report 2020
– ident: ref4
  doi: 10.1137/080733991
– ident: ref13
  doi: 10.1162/EVCO_a_00159
– ident: ref45
  doi: 10.1109/TEVC.2022.3144880
– ident: ref48
  doi: 10.1609/aaai.v36i9.21283
– start-page: 3560
  year: 2017
  ident: ref38
  article-title: Subset selection under noise
  publication-title: Proc. Adv. Neural Inf. Process. Syst. 30 (NeurIPS)
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1109/TEVC.2021.3076514
– start-page: 1765
  volume-title: Proc. Advances in Neural Inf. Process. Syst. 28 (NeurIPS)
  year: 2015
  ident: ref35
  article-title: Subset selection by Pareto optimization
– ident: ref5
  doi: 10.1007/978-1-4757-5184-0
– ident: ref25
  doi: 10.1109/TEVC.2023.3314152
– ident: ref31
  doi: 10.1007/s11047-006-9004-x
– ident: ref39
  doi: 10.1016/j.artint.2019.06.005
– ident: ref15
  doi: 10.1609/aaai.v33i01.3301549
– ident: ref19
  doi: 10.1609/aaai.v33i01.33012296
– ident: ref30
  doi: 10.1007/978-3-030-58112-1_28
– ident: ref27
  doi: 10.1007/s11432-023-3864-6
– ident: ref3
  doi: 10.1007/978-3-031-14721-0_30
– ident: ref28
  doi: 10.1126/sciadv.aap9519
– ident: ref20
  doi: 10.1109/TCYB.2019.2930979
– ident: ref44
  doi: 10.2307/3001968
– ident: ref14
  doi: 10.1109/CEC.2003.1299908
– start-page: 3045
  year: 2016
  ident: ref18
  article-title: Maximization of approximately submodular functions
  publication-title: Proc. Adv. Neural Inf. Process. Syst. 29 (NeurIPS)
– ident: ref11
  doi: 10.1007/978-3-031-14721-0_28
– ident: ref37
  doi: 10.1162/evco_a_00288
– ident: ref12
  doi: 10.1609/aaai.v37i10.26461
– ident: ref22
  doi: 10.1007/3-540-44719-9_19
– ident: ref47
  doi: 10.1145/3512290.3528847
– ident: ref23
  doi: 10.1109/TEVC.2004.823470
– ident: ref8
  doi: 10.5555/1248547.1248548
– ident: ref2
  doi: 10.1126/science.aao4408
– ident: ref29
  doi: 10.1007/BF01588971
– ident: ref33
  doi: 10.1515/jgd-2019-0006
– year: 2016
  ident: ref7
  article-title: Refugee resettlement
– ident: ref9
  doi: 10.1111/ecoj.12077
– ident: ref6
  doi: 10.1109/4235.996017
– ident: ref34
  doi: 10.1257/aer.103.5.1925
SSID ssj0002512227
Score 2.2926936
Snippet Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees)...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Approximately submodular optimization
Artificial intelligence
Biological system modeling
Employment
Interviews
Linear programming
Maintenance engineering
matroid constraints
migrant resettlement
multiobjective evolutionary algorithms (MOEAs)
multiobjective optimization
Optimization
Title Migrant Resettlement by Evolutionary Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/10636230
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBCeRRRHpUHFoa0rmOceKNCRSDRwlCkbpGfqAhaVNJKXfjtnJ20KgNIbEl0iaLPvvt8Z98dQhdAidJ5RTKS64gZLiIhjY14qhVxlvBUhpL5D8lgkI5G4qlMVg-5MNbacPjMtvxl2Ms3Uz33oTLQcA72NgYPvZIkSZGstQ6oeKKmNFltRRLRHnbvwQGkrBUzX3WP_KCejV4qgUpua__8iT20W64ZcbcY5H20ZScHqLbqx4BL9TxE1_3xC1BPjv1xOl-b2H8JqyXuLcoJJmdLHFJup-q1sHT4EWzGe5mMWUfPt73hzV1UdkiINChSHhmROtYhxkjXoRyYG5wfZf1RS2PVlRXCMKYpUywhKjYyVZyAfIdqbsBtITI-QtXJdGKPEYalhnXMMW8dmXFaOhMbSq12cO-UaqD2CrxMl-XDfReLtyy4EURkAHfm4c5KuBvocv3GR1E64w_Zukd6Q64A-eSX56doh_pGvCEWcoaq-Wxuz9G2XuTjz1kTVfpfvWaYHt9cLrmk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhFfGDEZw9ePCx0u6VsbxKDgQjoARNumz4NRsHgQsK_t-0WggdNvO1uZjebr535OtPODAA3lhK5cYqkOJURUZRFjCsd0VQKZDSiKfcl83vNwSAdjdhzSFb3uTBaa3_4TNfcpd_LV1M5d6Eyq-HU2tvEeujbDUJwXKRrrUMqjqoxbq42IxGrD1td6wJiUkuIq7uHfpDPRjcVTyYP5X_-xgHYD6tG2CqG-RBs6ckRKK86MsCgoMfgrj9-teSTQ3egzlUndl-CYgnbizDF-GwJfdLtVLwVtg4-WavxEdIxK-DloT2870ShR0IkrSrlkWKpITFSipsYU8vd1v0R2h22VFo0NGOKEImJIE0kEsVTQZGVj7GkyjouiCcnoDSZTvQpgHaxoQ0xxNlHoozkRiUKYy2NvTdCVEF9BV4mQwFx18fiPfOOBGKZhTtzcGcB7iq4Xb_xWRTP-EO24pDekCtAPvvl-TXY7Qz7vazXHTyegz3s2vL6yMgFKOWzub4EO3KRj79mV36SfAPJuLu6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migrant+Resettlement+by+Evolutionary+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Liu%2C+Dan-Xuan&rft.au=Gu%2C+Yu-Ran&rft.au=Qian%2C+Chao&rft.au=Mu%2C+Xin&rft.date=2025-01-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=6&rft.issue=1&rft.spage=51&rft.epage=65&rft_id=info:doi/10.1109%2FTAI.2024.3443790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2024_3443790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon