Migrant Resettlement by Evolutionary Multiobjective Optimization
Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific resear...
Uloženo v:
| Vydáno v: | IEEE transactions on artificial intelligence Ročník 6; číslo 1; s. 51 - 65 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2025
|
| Témata: | |
| ISSN: | 2691-4581, 2691-4581 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific research attention, from the perspective of maximizing the employment rate. Previous works mainly formulated migrant resettlement as an approximately submodular optimization problem subject to multiple matroid constraints and employed the greedy algorithm, whose performance, however, may be limited due to its greedy nature. In this article, we propose a new framework called migrant resettlement by evolutionary multiobjective optimization (MR-EMO), which reformulates migrant resettlement as a biobjective optimization problem that maximizes the expected number of employed migrants and minimizes the number of dispatched migrants simultaneously, and employs a multiobjective evolutionary algorithm (MOEA) to solve the biobjective problem. We implement MR-EMO using three MOEAs: the popular nondominated sorting genetic algorithm II (NSGA-II), MOEA based on decomposition (MOEA/D) as well as the theoretically grounded global simple evolutionary multiobjective optimizer (GSEMO). To further improve the performance of MR-EMO, we propose a specific MOEA, called GSEMO using matrix-swap mutation and repair mechanism (GSEMO-SR), which has a better ability to search for feasible solutions. We prove that MR-EMO using either GSEMO or GSEMO-SR can achieve better theoretical guarantees than the previous greedy algorithm. Experimental results under the interview and coordination migration models clearly show the superiority of MR-EMO (with either NSGA-II, MOEA/D, GSEMO or GSEMO-SR) over previous algorithms, and that using GSEMO-SR leads to the best performance of MR-EMO. |
|---|---|
| AbstractList | Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees) increases rapidly, a key challenge faced by each country is the problem of migrant resettlement. This problem has attracted scientific research attention, from the perspective of maximizing the employment rate. Previous works mainly formulated migrant resettlement as an approximately submodular optimization problem subject to multiple matroid constraints and employed the greedy algorithm, whose performance, however, may be limited due to its greedy nature. In this article, we propose a new framework called migrant resettlement by evolutionary multiobjective optimization (MR-EMO), which reformulates migrant resettlement as a biobjective optimization problem that maximizes the expected number of employed migrants and minimizes the number of dispatched migrants simultaneously, and employs a multiobjective evolutionary algorithm (MOEA) to solve the biobjective problem. We implement MR-EMO using three MOEAs: the popular nondominated sorting genetic algorithm II (NSGA-II), MOEA based on decomposition (MOEA/D) as well as the theoretically grounded global simple evolutionary multiobjective optimizer (GSEMO). To further improve the performance of MR-EMO, we propose a specific MOEA, called GSEMO using matrix-swap mutation and repair mechanism (GSEMO-SR), which has a better ability to search for feasible solutions. We prove that MR-EMO using either GSEMO or GSEMO-SR can achieve better theoretical guarantees than the previous greedy algorithm. Experimental results under the interview and coordination migration models clearly show the superiority of MR-EMO (with either NSGA-II, MOEA/D, GSEMO or GSEMO-SR) over previous algorithms, and that using GSEMO-SR leads to the best performance of MR-EMO. |
| Author | Tang, Ke Liu, Dan-Xuan Qian, Chao Mu, Xin Gu, Yu-Ran |
| Author_xml | – sequence: 1 givenname: Dan-Xuan orcidid: 0000-0002-7076-823X surname: Liu fullname: Liu, Dan-Xuan email: liudx@lamda.nju.edu.cn organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China – sequence: 2 givenname: Yu-Ran orcidid: 0000-0002-1539-9988 surname: Gu fullname: Gu, Yu-Ran email: guyr@lamda.nju.edu.cn organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China – sequence: 3 givenname: Chao orcidid: 0000-0001-6011-2512 surname: Qian fullname: Qian, Chao email: qianc@lamda.nju.edu.cn organization: National Key Laboratory for Novel Software Technology and School of Artificial Intelligence, Nanjing University, Nanjing, China – sequence: 4 givenname: Xin orcidid: 0000-0002-2747-5677 surname: Mu fullname: Mu, Xin email: mux@pcl.ac.cn organization: Peng Cheng Laboratory, Shenzhen, China – sequence: 5 givenname: Ke orcidid: 0000-0002-6236-2002 surname: Tang fullname: Tang, Ke email: tangk3@sustech.edu.cn organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNp9kEFrwkAQhZdiodZ676GH_IGks7Prxr1VxLaCIhR7DrvZSVmJiSSrYH99Y_UgPfQ0b5h5M4_vnvWquiLGHjkknIN-Xk_mCQLKREgpUg03rI9K81iOxrx3pe_YsG03AIAjjohpn70s_VdjqhB9UEshlLSlrrHHaHaoy33wdWWaY7Tcl520G8qDP1C02gW_9d_mNH5gt4UpWxpe6oB9vs7W0_d4sXqbTyeLOOepDrHT40JycM4UHBVqwZW0BBrQkR2R1k7KHKWVKVjhzNgq6PY55soppcCIAYPz3byp27ahIts1ftuFyzhkJwhZByE7QcguEDqL-mPJffgNHRrjy_-MT2ejJ6KrP0ooFCB-ACQya_U |
| CODEN | ITAICB |
| CitedBy_id | crossref_primary_10_1016_j_artint_2025_104308 |
| Cites_doi | 10.1007/s11633-020-1253-0 10.1007/978-3-642-16544-3 10.1016/j.artint.2021.103597 10.1109/TEVC.2007.892759 10.1007/978-3-030-29414-4 10.1109/TEVC.2015.2501315 10.1007/978-981-13-5956-9 10.1109/TEVC.2019.2929555 10.1287/moor.1100.0463 10.1137/080733991 10.1162/EVCO_a_00159 10.1109/TEVC.2022.3144880 10.1609/aaai.v36i9.21283 10.1109/TEVC.2021.3076514 10.1007/978-1-4757-5184-0 10.1109/TEVC.2023.3314152 10.1007/s11047-006-9004-x 10.1016/j.artint.2019.06.005 10.1609/aaai.v33i01.3301549 10.1609/aaai.v33i01.33012296 10.1007/978-3-030-58112-1_28 10.1007/s11432-023-3864-6 10.1007/978-3-031-14721-0_30 10.1126/sciadv.aap9519 10.1109/TCYB.2019.2930979 10.2307/3001968 10.1109/CEC.2003.1299908 10.1007/978-3-031-14721-0_28 10.1162/evco_a_00288 10.1609/aaai.v37i10.26461 10.1007/3-540-44719-9_19 10.1145/3512290.3528847 10.1109/TEVC.2004.823470 10.5555/1248547.1248548 10.1126/science.aao4408 10.1007/BF01588971 10.1515/jgd-2019-0006 10.1111/ecoj.12077 10.1109/4235.996017 10.1257/aer.103.5.1925 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAI.2024.3443790 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2691-4581 |
| EndPage | 65 |
| ExternalDocumentID | 10_1109_TAI_2024_3443790 10636230 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 62276124; 62106114 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c179t-d98f410ddaf126293164be0902deb5e99d44c24b470b3da8b60f4112c6d6660a3 |
| IEDL.DBID | RIE |
| ISSN | 2691-4581 |
| IngestDate | Tue Nov 18 21:31:46 EST 2025 Sat Nov 29 07:35:49 EST 2025 Wed Aug 27 07:40:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c179t-d98f410ddaf126293164be0902deb5e99d44c24b470b3da8b60f4112c6d6660a3 |
| ORCID | 0000-0002-2747-5677 0000-0002-1539-9988 0000-0001-6011-2512 0000-0002-6236-2002 0000-0002-7076-823X |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TAI_2024_3443790 crossref_citationtrail_10_1109_TAI_2024_3443790 ieee_primary_10636230 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Jan. 2025-1-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on artificial intelligence |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 Maaten (ref43) 2008; 9 (ref42) 2021 ref46 ref45 ref48 Qian (ref38) 2017 ref47 ref44 ref49 ref8 ref9 Qian (ref35) 2015 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 (ref21) 2019 Horel (ref18) 2016 ref24 Bäck (ref1) 1996 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 Ruhs (ref41) 2015 Delacrétaz (ref7) 2016 |
| References_xml | – year: 2021 ident: ref42 article-title: Global Trends: Forced Displacement in 2020 – ident: ref17 doi: 10.1007/s11633-020-1253-0 – volume-title: Genetic Algorithms year: 1996 ident: ref1 article-title: Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming – ident: ref32 doi: 10.1007/978-3-642-16544-3 – ident: ref40 doi: 10.1016/j.artint.2021.103597 – ident: ref46 doi: 10.1109/TEVC.2007.892759 – ident: ref10 doi: 10.1007/978-3-030-29414-4 – ident: ref26 doi: 10.1109/TEVC.2015.2501315 – year: 2015 ident: ref41 article-title: The labour market effects of immigration publication-title: Migration Observatory – ident: ref49 doi: 10.1007/978-981-13-5956-9 – ident: ref36 doi: 10.1109/TEVC.2019.2929555 – ident: ref24 doi: 10.1287/moor.1100.0463 – year: 2019 ident: ref21 article-title: World Migration Report 2020 – ident: ref4 doi: 10.1137/080733991 – ident: ref13 doi: 10.1162/EVCO_a_00159 – ident: ref45 doi: 10.1109/TEVC.2022.3144880 – ident: ref48 doi: 10.1609/aaai.v36i9.21283 – start-page: 3560 year: 2017 ident: ref38 article-title: Subset selection under noise publication-title: Proc. Adv. Neural Inf. Process. Syst. 30 (NeurIPS) – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref16 doi: 10.1109/TEVC.2021.3076514 – start-page: 1765 volume-title: Proc. Advances in Neural Inf. Process. Syst. 28 (NeurIPS) year: 2015 ident: ref35 article-title: Subset selection by Pareto optimization – ident: ref5 doi: 10.1007/978-1-4757-5184-0 – ident: ref25 doi: 10.1109/TEVC.2023.3314152 – ident: ref31 doi: 10.1007/s11047-006-9004-x – ident: ref39 doi: 10.1016/j.artint.2019.06.005 – ident: ref15 doi: 10.1609/aaai.v33i01.3301549 – ident: ref19 doi: 10.1609/aaai.v33i01.33012296 – ident: ref30 doi: 10.1007/978-3-030-58112-1_28 – ident: ref27 doi: 10.1007/s11432-023-3864-6 – ident: ref3 doi: 10.1007/978-3-031-14721-0_30 – ident: ref28 doi: 10.1126/sciadv.aap9519 – ident: ref20 doi: 10.1109/TCYB.2019.2930979 – ident: ref44 doi: 10.2307/3001968 – ident: ref14 doi: 10.1109/CEC.2003.1299908 – start-page: 3045 year: 2016 ident: ref18 article-title: Maximization of approximately submodular functions publication-title: Proc. Adv. Neural Inf. Process. Syst. 29 (NeurIPS) – ident: ref11 doi: 10.1007/978-3-031-14721-0_28 – ident: ref37 doi: 10.1162/evco_a_00288 – ident: ref12 doi: 10.1609/aaai.v37i10.26461 – ident: ref22 doi: 10.1007/3-540-44719-9_19 – ident: ref47 doi: 10.1145/3512290.3528847 – ident: ref23 doi: 10.1109/TEVC.2004.823470 – ident: ref8 doi: 10.5555/1248547.1248548 – ident: ref2 doi: 10.1126/science.aao4408 – ident: ref29 doi: 10.1007/BF01588971 – ident: ref33 doi: 10.1515/jgd-2019-0006 – year: 2016 ident: ref7 article-title: Refugee resettlement – ident: ref9 doi: 10.1111/ecoj.12077 – ident: ref6 doi: 10.1109/4235.996017 – ident: ref34 doi: 10.1257/aer.103.5.1925 |
| SSID | ssj0002512227 |
| Score | 2.2926936 |
| Snippet | Migration has been a universal phenomenon, which brings opportunities as well as challenges for global development. As the number of migrants (e.g., refugees)... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Approximately submodular optimization Artificial intelligence Biological system modeling Employment Interviews Linear programming Maintenance engineering matroid constraints migrant resettlement multiobjective evolutionary algorithms (MOEAs) multiobjective optimization Optimization |
| Title | Migrant Resettlement by Evolutionary Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/10636230 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBCeRRRHpUHFoa0rmOceKNCRSDRwlCkbpGfqAhaVNJKXfjtnJ20KgNIbEl0iaLPvvt8Z98dQhdAidJ5RTKS64gZLiIhjY14qhVxlvBUhpL5D8lgkI5G4qlMVg-5MNbacPjMtvxl2Ms3Uz33oTLQcA72NgYPvZIkSZGstQ6oeKKmNFltRRLRHnbvwQGkrBUzX3WP_KCejV4qgUpua__8iT20W64ZcbcY5H20ZScHqLbqx4BL9TxE1_3xC1BPjv1xOl-b2H8JqyXuLcoJJmdLHFJup-q1sHT4EWzGe5mMWUfPt73hzV1UdkiINChSHhmROtYhxkjXoRyYG5wfZf1RS2PVlRXCMKYpUywhKjYyVZyAfIdqbsBtITI-QtXJdGKPEYalhnXMMW8dmXFaOhMbSq12cO-UaqD2CrxMl-XDfReLtyy4EURkAHfm4c5KuBvocv3GR1E64w_Zukd6Q64A-eSX56doh_pGvCEWcoaq-Wxuz9G2XuTjz1kTVfpfvWaYHt9cLrmk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhFfGDEZw9ePCx0u6VsbxKDgQjoARNumz4NRsHgQsK_t-0WggdNvO1uZjebr535OtPODAA3lhK5cYqkOJURUZRFjCsd0VQKZDSiKfcl83vNwSAdjdhzSFb3uTBaa3_4TNfcpd_LV1M5d6Eyq-HU2tvEeujbDUJwXKRrrUMqjqoxbq42IxGrD1td6wJiUkuIq7uHfpDPRjcVTyYP5X_-xgHYD6tG2CqG-RBs6ckRKK86MsCgoMfgrj9-teSTQ3egzlUndl-CYgnbizDF-GwJfdLtVLwVtg4-WavxEdIxK-DloT2870ShR0IkrSrlkWKpITFSipsYU8vd1v0R2h22VFo0NGOKEImJIE0kEsVTQZGVj7GkyjouiCcnoDSZTvQpgHaxoQ0xxNlHoozkRiUKYy2NvTdCVEF9BV4mQwFx18fiPfOOBGKZhTtzcGcB7iq4Xb_xWRTP-EO24pDekCtAPvvl-TXY7Qz7vazXHTyegz3s2vL6yMgFKOWzub4EO3KRj79mV36SfAPJuLu6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migrant+Resettlement+by+Evolutionary+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Liu%2C+Dan-Xuan&rft.au=Gu%2C+Yu-Ran&rft.au=Qian%2C+Chao&rft.au=Mu%2C+Xin&rft.date=2025-01-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=6&rft.issue=1&rft.spage=51&rft.epage=65&rft_id=info:doi/10.1109%2FTAI.2024.3443790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2024_3443790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |