Generating Long Financial Report Using Conditional Variational Autoencoders With Knowledge Distillation

Generating financial reports from a piece of news is a challenging task due to the lack of sufficient background knowledge to effectively generate long financial reports. To address this issue, this article proposes a conditional variational autoencoders (CVAEs)-based approach that distills external...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on artificial intelligence Ročník 5; číslo 4; s. 1669 - 1680
Hlavní autoři: Wang, Ziao, Ren, Yunpeng, Zhang, Xiaofeng, Wang, Yiyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2024
Témata:
ISSN:2691-4581, 2691-4581
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Generating financial reports from a piece of news is a challenging task due to the lack of sufficient background knowledge to effectively generate long financial reports. To address this issue, this article proposes a conditional variational autoencoders (CVAEs)-based approach that distills external knowledge from a set of news-report data. Specifically, we design an encoder-decoder architecture to learn the latent variable distribution from this set of news-report data to provide background knowledge. Next, a teacher-student network is employed to distill knowledge to refine the output of the decoder component. To evaluate the model performance, extensive experiments have been performed on two public datasets using evaluation criteria like BLEU, ROUGE, METEOR, and human evaluation. Our promising experimental results demonstrate that our proposed approach outperforms existing state-of-the-art approaches.
ISSN:2691-4581
2691-4581
DOI:10.1109/TAI.2024.3351594