Geometric feature knowledge-driven surrogate-based optimization via aerodynamic supervised autoencoder
•An aerodynamic supervised autoencoder is proposed to learn geometric feature correlated with aerodynamic responses with limited aerodynamic data.•The correlation between geometric features and aerodynamic responses is utilized to guide the initial sampling toward regions near the optimum.•The Eucli...
Gespeichert in:
| Veröffentlicht in: | Aerospace science and technology Jg. 168; S. 111028 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Masson SAS
01.01.2026
|
| Schlagworte: | |
| ISSN: | 1270-9638 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •An aerodynamic supervised autoencoder is proposed to learn geometric feature correlated with aerodynamic responses with limited aerodynamic data.•The correlation between geometric features and aerodynamic responses is utilized to guide the initial sampling toward regions near the optimum.•The Euclidean distance between the predicted solution and the current optimum in the feature space is used as a penalty term to enhance the effectiveness of infill sampling.•The proposed optimization framework improves optimization efficiency by approximately twofold while achieving superior aerodynamic performance.
Machine learning provides a promising approach for aerodynamic design. However, how to effectively learn from geometric or aerodynamic data to improve design performance remains a challenge. This work presents a geometric feature knowledge-driven surrogate-based optimization framework to accelerate the design process by exploiting geometric data. An aerodynamic supervised autoencoder, which linearly embeds limited aerodynamic data into the latent layer, is proposed to learn geometric features correlated with aerodynamic responses. Based on the learned feature knowledge, two approaches are developed to enhance sample quality for surrogate modeling in aerodynamic optimization. First, a promising subspace is identified in the feature space based on the correlation to guide the initial sampling toward regions near the optimum. Then, the Euclidean distance between the predicted solution and the current optimum in the feature space is used as a penalty term to enhance the effectiveness of infill sampling. The proposed framework is validated through aerodynamic optimization of the RAE2822 airfoil and the ONERA M6 wing. Results demonstrate that the aerodynamic supervised autoencoder can extract geometric features that are correlated with various aerodynamic responses using limited aerodynamic data. Compared to frameworks without feature knowledge, the proposed optimization framework improves optimization efficiency by about twice while achieving superior aerodynamic performance. |
|---|---|
| AbstractList | •An aerodynamic supervised autoencoder is proposed to learn geometric feature correlated with aerodynamic responses with limited aerodynamic data.•The correlation between geometric features and aerodynamic responses is utilized to guide the initial sampling toward regions near the optimum.•The Euclidean distance between the predicted solution and the current optimum in the feature space is used as a penalty term to enhance the effectiveness of infill sampling.•The proposed optimization framework improves optimization efficiency by approximately twofold while achieving superior aerodynamic performance.
Machine learning provides a promising approach for aerodynamic design. However, how to effectively learn from geometric or aerodynamic data to improve design performance remains a challenge. This work presents a geometric feature knowledge-driven surrogate-based optimization framework to accelerate the design process by exploiting geometric data. An aerodynamic supervised autoencoder, which linearly embeds limited aerodynamic data into the latent layer, is proposed to learn geometric features correlated with aerodynamic responses. Based on the learned feature knowledge, two approaches are developed to enhance sample quality for surrogate modeling in aerodynamic optimization. First, a promising subspace is identified in the feature space based on the correlation to guide the initial sampling toward regions near the optimum. Then, the Euclidean distance between the predicted solution and the current optimum in the feature space is used as a penalty term to enhance the effectiveness of infill sampling. The proposed framework is validated through aerodynamic optimization of the RAE2822 airfoil and the ONERA M6 wing. Results demonstrate that the aerodynamic supervised autoencoder can extract geometric features that are correlated with various aerodynamic responses using limited aerodynamic data. Compared to frameworks without feature knowledge, the proposed optimization framework improves optimization efficiency by about twice while achieving superior aerodynamic performance. |
| ArticleNumber | 111028 |
| Author | Zuo, Zijun Wu, Xiaojing Zhang, Weiwei Ma, Long |
| Author_xml | – sequence: 1 givenname: Long surname: Ma fullname: Ma, Long organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China – sequence: 2 givenname: Xiaojing orcidid: 0000-0002-2828-3781 surname: Wu fullname: Wu, Xiaojing email: xjwu@iaii.ac.cn organization: Institute of AI for Industries, Nanjing, 210000, China – sequence: 3 givenname: Zijun surname: Zuo fullname: Zuo, Zijun organization: Institute of AI for Industries, Nanjing, 210000, China – sequence: 4 givenname: Weiwei orcidid: 0000-0001-7799-833X surname: Zhang fullname: Zhang, Weiwei organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China |
| BookMark | eNp9kL1OwzAUhT0UibbwAGx5gQTbSRxbTKjiT6rEArN1Y99ULk1c2U5QeXpSlZnpLOc7OvpWZDH4AQm5Y7RglIn7fQExFZzyumCMUS4XZMl4Q3MlSnlNVjHuKaVcVXxJuhf0PabgTNYhpDFg9jX47wPaHeY2uAmHLI4h-B0kzFuIaDN_TK53P5CcH7LJQQYYvD0N0M8rcTximNy5B2PyOBhvMdyQqw4OEW__ck0-n58-Nq_59v3lbfO4zQ1rVMplWTdSCGs51ozXqlFtiRV0lZFQYkm5MBSqCtpOCGhRSZBCddLIBgVVXVOuCbvsmuBjDNjpY3A9hJNmVJ_l6L2e5eizHH2RMzMPFwbnY5PDoKNx82-0LqBJ2nr3D_0LN3pzzQ |
| Cites_doi | 10.1063/5.0218931 10.1007/s11831-025-10349-x 10.1016/j.advengsoft.2014.08.001 10.1016/j.compfluid.2022.105391 10.1016/j.paerosci.2008.11.001 10.1007/s10898-016-0484-7 10.1109/TKDE.2009.191 10.1017/jfm.2015.548 10.1016/j.applthermaleng.2024.123570 10.1016/j.ymssp.2020.106687 10.1016/j.ast.2021.106701 10.1080/00401706.2000.10486045 10.1016/j.ast.2024.109152 10.1137/130916138 10.1007/s00158-021-02851-0 10.1063/5.0221767 10.1016/j.eswa.2023.119513 10.1162/089976698300017467 10.1016/j.ast.2024.108963 10.1109/ACCESS.2020.2993562 10.1016/j.cja.2020.01.015 10.1016/j.engappai.2024.109461 10.1007/s00158-024-03758-2 10.1016/j.compstruc.2007.01.013 10.1016/j.compfluid.2023.106116 10.2514/3.58379 10.1016/j.cma.2020.113485 10.2514/3.10007 10.1023/A:1008306431147 10.2514/1.J059254 10.5957/JOSR.09180056 10.1007/BF01197708 10.1007/s00366-025-02211-2 10.1016/j.ast.2018.08.005 10.1561/2200000056 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2025.111028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ast_2025_111028 S1270963825010910 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c179t-8357866dd2e5125979b3e4af4c8a3e3026c0a44abf66abe98a869f8c87e609f73 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001596376700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Sat Nov 29 06:52:59 EST 2025 Sat Nov 08 17:26:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature learning Aerodynamic shape optimization Autoencoder Intelligent sampling Geometric knowledge |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c179t-8357866dd2e5125979b3e4af4c8a3e3026c0a44abf66abe98a869f8c87e609f73 |
| ORCID | 0000-0001-7799-833X 0000-0002-2828-3781 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2025_111028 elsevier_sciencedirect_doi_10_1016_j_ast_2025_111028 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2026 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Serani, D'Agostino, Campana, Diez (bib0023) 2020; 64 Fan, Huang, Wang (bib0011) 2014; 77 Fang, Lin, Winker, Zhang (bib0043) 2000; 42 McKay, Beckman, Conover (bib0042) 1979; 21 A. Serani, G. Palma, J. Wackers, D. Quagliarella, S. Gaggero, M. Diez, Extending parametric model embedding with physical information for design-space dimensionality reduction in shape optimization, (2025). Wu, Ma, Zuo (bib0010) 2024; 149 Achour, Sung, Pinon-Fischer, Mavris (bib0035) 2020 Zhang, Xie, Ji, Zhu, Zheng (bib0018) 2021; 373 Balis, Jacobs, May (bib0003) 2024; 268 Hu, Zhang, Xiang, Wang (bib0052) 2020; 8 Xue, Yang, Yao, Zhao, Chen (bib0007) 2025; 19 Sohn, Lee, Yan (bib0038) 2015 Kou, Botero-Bolívar, Ballano, Marino, De Santana, Valero, Ferrer (bib0031) 2023; 217 Yoon, Jameson (bib0051) 1988; 26 Anibal, Martins (bib0002) 2024; 252 . Wu, Zuo, Ma, Zhang (bib0019) 2024; 146 Booker, Dennis, Frank, Serafini, Torczon, Trosset (bib0012) 1999; 17 Tao, Sun, Guo, Wang (bib0027) 2020; 33 Parr, Holden, Forrester, Keane (bib0041) 2010 Novotny, Sandler, Wukie (bib0004) 2025 Deng, Zhang, Xia, Qiang, Zhu, Teng (bib0017) 2024; 36 Schölkopf, Smola, Müller (bib0029) 1998; 10 Kulfan (bib0048) 2007 Zhang, Li, Ye, Jiang (bib0049) 2015; 783 Samareh (bib0046) 2004 Li, Zhang, Martins, Shu (bib0034) 2020; 58 Zhan, Qian, Cheng (bib0015) 2017; 68 Zhou, Lu (bib0009) 2020; 140 De Boer, Van Der Schoot, Bijl (bib0039) 2007; 85 Wu, Zuo, Ma, Zhang (bib0006) 2024; 146 (bib0044) 2003 Kingma, Welling (bib0030) 2019; 12 Schmitt, Charpin (bib0053) 1979; 138 Ma, Wu, Zhang (bib0037) 2024; 18 Feng, Lv, Yan, Ai (bib0005) 2024; 36 Sun, Wang (bib0008) 2019; 233 Jones, Schonlau, Welch (bib0013) 1998; 13 Kennedy, Eberhart (bib0045) 1995 Wu, Zhang, Peng, Wang (bib0026) 2019; 84 Forrester, Keane (bib0014) 2009; 45 Wang, Qian, Zhao, Chen, He, Sun, Tian (bib0032) 2025; 139 Hicks, Henne (bib0047) 1978; 15 Constantine, Dow, Wang (bib0025) 2014; 36 Serani, Diez (bib0021) 2025 Jolliffe, Cadima (bib0022) 2016; 374 Duan, Xue, Jiang, Du, Xu, Shi (bib0016) 2024; 67 Popescu, Balas, Perescu-Popescu, Mastorakis (bib0040) 2009; 8 Chapron, Blondeau, El Din, Sipp, Bergmann (bib0028) 2025 Pan, Yang (bib0020) 2010; 22 Martins (bib0001) 2022; 239 K. Yonekura, Data-driven design exploration method using conditional variational autoencoder for airfoil design, (2021) . Spalart, Allmaras (bib0050) 2012 Du, He, Martins (bib0033) 2021; 113 Anibal (10.1016/j.ast.2025.111028_bib0002) 2024; 252 Feng (10.1016/j.ast.2025.111028_bib0005) 2024; 36 Balis (10.1016/j.ast.2025.111028_bib0003) 2024; 268 10.1016/j.ast.2025.111028_bib0024 Chapron (10.1016/j.ast.2025.111028_bib0028) 2025 Serani (10.1016/j.ast.2025.111028_bib0023) 2020; 64 McKay (10.1016/j.ast.2025.111028_bib0042) 1979; 21 Deng (10.1016/j.ast.2025.111028_bib0017) 2024; 36 Zhou (10.1016/j.ast.2025.111028_bib0009) 2020; 140 Schölkopf (10.1016/j.ast.2025.111028_bib0029) 1998; 10 Serani (10.1016/j.ast.2025.111028_bib0021) 2025 Parr (10.1016/j.ast.2025.111028_bib0041) Pan (10.1016/j.ast.2025.111028_bib0020) 2010; 22 Li (10.1016/j.ast.2025.111028_bib0034) 2020; 58 10.1016/j.ast.2025.111028_bib0036 Xue (10.1016/j.ast.2025.111028_bib0007) 2025; 19 Fang (10.1016/j.ast.2025.111028_bib0043) 2000; 42 Kennedy (10.1016/j.ast.2025.111028_bib0045) 1995 Kingma (10.1016/j.ast.2025.111028_bib0030) 2019; 12 Wu (10.1016/j.ast.2025.111028_bib0006) 2024; 146 Jones (10.1016/j.ast.2025.111028_bib0013) 1998; 13 Wu (10.1016/j.ast.2025.111028_bib0026) 2019; 84 Du (10.1016/j.ast.2025.111028_bib0033) 2021; 113 Booker (10.1016/j.ast.2025.111028_bib0012) 1999; 17 Popescu (10.1016/j.ast.2025.111028_bib0040) 2009; 8 Sun (10.1016/j.ast.2025.111028_bib0008) 2019; 233 Ma (10.1016/j.ast.2025.111028_bib0037) 2024; 18 Zhang (10.1016/j.ast.2025.111028_bib0018) 2021; 373 Hu (10.1016/j.ast.2025.111028_bib0052) 2020; 8 Forrester (10.1016/j.ast.2025.111028_bib0014) 2009; 45 Fan (10.1016/j.ast.2025.111028_bib0011) 2014; 77 Achour (10.1016/j.ast.2025.111028_bib0035) 2020 Wu (10.1016/j.ast.2025.111028_bib0010) 2024; 149 Martins (10.1016/j.ast.2025.111028_bib0001) 2022; 239 Spalart (10.1016/j.ast.2025.111028_bib0050) 2012 Kou (10.1016/j.ast.2025.111028_bib0031) 2023; 217 De Boer (10.1016/j.ast.2025.111028_bib0039) 2007; 85 Schmitt (10.1016/j.ast.2025.111028_bib0053) 1979; 138 Kulfan (10.1016/j.ast.2025.111028_bib0048) 2007 Sohn (10.1016/j.ast.2025.111028_bib0038) 2015 Wu (10.1016/j.ast.2025.111028_bib0019) 2024; 146 Wang (10.1016/j.ast.2025.111028_bib0032) 2025; 139 Novotny (10.1016/j.ast.2025.111028_bib0004) 2025 Jolliffe (10.1016/j.ast.2025.111028_bib0022) 2016; 374 (10.1016/j.ast.2025.111028_bib0044) 2003 Zhang (10.1016/j.ast.2025.111028_bib0049) 2015; 783 Hicks (10.1016/j.ast.2025.111028_bib0047) 1978; 15 Yoon (10.1016/j.ast.2025.111028_bib0051) 1988; 26 Duan (10.1016/j.ast.2025.111028_bib0016) 2024; 67 Zhan (10.1016/j.ast.2025.111028_bib0015) 2017; 68 Constantine (10.1016/j.ast.2025.111028_bib0025) 2014; 36 Tao (10.1016/j.ast.2025.111028_bib0027) 2020; 33 Samareh (10.1016/j.ast.2025.111028_bib0046) 2004 |
| References_xml | – volume: 233 start-page: 5863 year: 2019 end-page: 5872 ident: bib0008 article-title: A review of the artificial neural network surrogate modeling in aerodynamic design publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering – volume: 45 start-page: 50 year: 2009 end-page: 79 ident: bib0014 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. – volume: 252 year: 2024 ident: bib0002 article-title: Adjoint-based shape optimization of a plate-fin heat exchanger using CFD publication-title: Appl. Therm. Eng. – volume: 36 year: 2024 ident: bib0005 article-title: A gradient-improved sampling plan for surrogate-based aerodynamic shape optimization using discontinuous Galerkin methods publication-title: Phys. Fluids – year: 2012 ident: bib0050 article-title: A one-equation turbulence model for aerodynamic flows publication-title: 30th Aerospace Sciences Meeting and Exhibit – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: bib0030 article-title: An introduction to variational autoencoders publication-title: FNT Mach. Learn. – volume: 374 year: 2016 ident: bib0022 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 19 start-page: 2456500 year: 2025 ident: bib0007 article-title: Optimizing aerodynamic shape of benchmark problems using an improved Gaussian process regression algorithm publication-title: Eng. Appl. Computat. Fluid Mech. – year: 2025 ident: bib0028 article-title: Clustered active subspaces for aerodynamic shape optimization publication-title: AIAA SCITECH 2025 Forum – volume: 140 year: 2020 ident: bib0009 article-title: An enhanced kriging surrogate modeling technique for high-dimensional problems publication-title: Mech. Syst. Signal Process. – volume: 8 start-page: 579 year: 2009 end-page: 588 ident: bib0040 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans. Cir. Syst. – volume: 149 year: 2024 ident: bib0010 article-title: High-dimensional aerodynamic shape optimization framework using geometric domain decomposition and data-driven support strategy for wing design publication-title: Aerosp. Sci. Technol. – volume: 146 year: 2024 ident: bib0019 article-title: Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft publication-title: Aerosp. Sci. Technol. – start-page: 217 year: 2003 end-page: 228 ident: bib0044 article-title: Generation of random samples, permutations, and stochastic processes publication-title: Random Number Generation and Monte Carlo Methods – volume: 17 start-page: 1 year: 1999 end-page: 13 ident: bib0012 article-title: A rigorous framework for optimization of expensive functions by surrogates publication-title: Struct. Optim. – reference: A. Serani, G. Palma, J. Wackers, D. Quagliarella, S. Gaggero, M. Diez, Extending parametric model embedding with physical information for design-space dimensionality reduction in shape optimization, (2025). – start-page: 1942 year: 1995 end-page: 1948 ident: bib0045 article-title: Particle swarm optimization publication-title: Proceedings of ICNN'95 - International Conference on Neural Networks – volume: 146 year: 2024 ident: bib0006 article-title: Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft publication-title: Aerosp. Sci. Technol. – volume: 217 year: 2023 ident: bib0031 article-title: Aeroacoustic airfoil shape optimization enhanced by autoencoders publication-title: Expert Syst. Appl. – volume: 8 start-page: 90805 year: 2020 end-page: 90823 ident: bib0052 article-title: Neural networks-based aerodynamic data modeling: a comprehensive review publication-title: IEEE Access – volume: 36 start-page: A1500 year: 2014 end-page: A1524 ident: bib0025 article-title: Active subspace methods in theory and practice: applications to kriging surfaces publication-title: SIAM J. Sci. Comput. – volume: 113 year: 2021 ident: bib0033 article-title: Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling publication-title: Aerosp. Sci. Technol. – volume: 18 year: 2024 ident: bib0037 article-title: Efficient aerodynamic shape optimization by using unsupervised manifold learning to filter geometric features publication-title: Eng. Appl. Comput. Fluid Mech. – year: 2015 ident: bib0038 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv. Neu. Info . Proc. Sys., Curran. Associates, Inc. – year: 2025 ident: bib0021 article-title: A survey on design-space dimensionality reduction methods for shape optimization publication-title: Arch. Computat. Methods Eng. – volume: 67 start-page: 50 year: 2024 ident: bib0016 article-title: A parallel constrained Bayesian optimization algorithm for high-dimensional expensive problems and its application in optimization of VRB structures publication-title: Struct. Multidisc. Optim. – year: 2025 ident: bib0004 article-title: Gradient-based aeroelastic optimization of a generic flying wing model publication-title: AIAA SCITECH 2025 Forum – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: bib0029 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. – volume: 77 start-page: 48 year: 2014 end-page: 65 ident: bib0011 article-title: Sparsity-promoting polynomial response surface: a new surrogate model for response prediction publication-title: Adv. Eng. Softw. – reference: K. Yonekura, Data-driven design exploration method using conditional variational autoencoder for airfoil design, (2021) . – volume: 138 year: 1979 ident: bib0053 article-title: Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers publication-title: AGARD AR – volume: 33 start-page: 1573 year: 2020 end-page: 1588 ident: bib0027 article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization publication-title: Chin. J. Aeronaut. – volume: 26 start-page: 1025 year: 1988 end-page: 1026 ident: bib0051 article-title: Lower-upper symmetric-gauss-seidel method for the euler and navier-stokes equations publication-title: AIAA J. – volume: 85 start-page: 784 year: 2007 end-page: 795 ident: bib0039 article-title: Mesh deformation based on radial basis function interpolation publication-title: Comput. Struct. – volume: 36 year: 2024 ident: bib0017 article-title: Performance prediction and design optimization of a transonic rotor based on deep transfer learning publication-title: Phys. Fluids – year: 2020 ident: bib0035 article-title: Development of a conditional generative adversarial network for airfoil shape optimization publication-title: AIAA Scitech 2020 Forum – volume: 268 year: 2024 ident: bib0003 article-title: Adjoint-based aerodynamic shape optimization with hybridized discontinuous Galerkin methods publication-title: Comput. Fluids – year: 2010 ident: bib0041 article-title: Review of efficient surrogate infill sampling criteria with constraint handling – volume: 373 year: 2021 ident: bib0018 article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 139 year: 2025 ident: bib0032 article-title: A generative design method of airfoil based on conditional variational autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 58 start-page: 4243 year: 2020 end-page: 4259 ident: bib0034 article-title: Efficient aerodynamic shape optimization with deep-learning-based geometric filtering publication-title: AIAA J. – reference: . – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib0020 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 239 year: 2022 ident: bib0001 article-title: Aerodynamic design optimization: challenges and perspectives publication-title: Comput. Fluids – volume: 783 start-page: 72 year: 2015 end-page: 102 ident: bib0049 article-title: Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers publication-title: J. Fluid Mech. – volume: 42 start-page: 237 year: 2000 end-page: 248 ident: bib0043 article-title: Uniform design: theory and application publication-title: Technometrics – volume: 64 start-page: 313 year: 2020 end-page: 327 ident: bib0023 article-title: Assessing the interplay of shape and physical parameters by unsupervised nonlinear dimensionality reduction methods publication-title: J. Ship Res. – volume: 21 start-page: 239 year: 1979 ident: bib0042 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: bib0013 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. – volume: 15 start-page: 407 year: 1978 end-page: 412 ident: bib0047 article-title: Wing design by numerical optimization publication-title: J. Aircr. – year: 2007 ident: bib0048 article-title: A universal parametric geometry representation method - “CST,” publication-title: 45th AIAA Aerospace Sciences Meeting and Exhibit – volume: 68 start-page: 641 year: 2017 end-page: 662 ident: bib0015 article-title: Pseudo expected improvement criterion for parallel EGO algorithm publication-title: J. Glob. Optim. – volume: 84 start-page: 632 year: 2019 end-page: 640 ident: bib0026 article-title: Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method publication-title: Aerosp. Sci. Technol. – year: 2004 ident: bib0046 article-title: Aerodynamic shape optimization based on free-form deformation publication-title: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference – volume: 36 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0005 article-title: A gradient-improved sampling plan for surrogate-based aerodynamic shape optimization using discontinuous Galerkin methods publication-title: Phys. Fluids doi: 10.1063/5.0218931 – year: 2025 ident: 10.1016/j.ast.2025.111028_bib0021 article-title: A survey on design-space dimensionality reduction methods for shape optimization publication-title: Arch. Computat. Methods Eng. doi: 10.1007/s11831-025-10349-x – volume: 77 start-page: 48 year: 2014 ident: 10.1016/j.ast.2025.111028_bib0011 article-title: Sparsity-promoting polynomial response surface: a new surrogate model for response prediction publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.08.001 – volume: 239 year: 2022 ident: 10.1016/j.ast.2025.111028_bib0001 article-title: Aerodynamic design optimization: challenges and perspectives publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2022.105391 – volume: 19 start-page: 2456500 year: 2025 ident: 10.1016/j.ast.2025.111028_bib0007 article-title: Optimizing aerodynamic shape of benchmark problems using an improved Gaussian process regression algorithm publication-title: Eng. Appl. Computat. Fluid Mech. – volume: 374 year: 2016 ident: 10.1016/j.ast.2025.111028_bib0022 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 45 start-page: 50 year: 2009 ident: 10.1016/j.ast.2025.111028_bib0014 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 68 start-page: 641 year: 2017 ident: 10.1016/j.ast.2025.111028_bib0015 article-title: Pseudo expected improvement criterion for parallel EGO algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-016-0484-7 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.ast.2025.111028_bib0020 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 8 start-page: 579 year: 2009 ident: 10.1016/j.ast.2025.111028_bib0040 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans. Cir. Syst. – volume: 783 start-page: 72 year: 2015 ident: 10.1016/j.ast.2025.111028_bib0049 article-title: Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.548 – year: 2025 ident: 10.1016/j.ast.2025.111028_bib0004 article-title: Gradient-based aeroelastic optimization of a generic flying wing model – volume: 252 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0002 article-title: Adjoint-based shape optimization of a plate-fin heat exchanger using CFD publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.123570 – volume: 140 year: 2020 ident: 10.1016/j.ast.2025.111028_bib0009 article-title: An enhanced kriging surrogate modeling technique for high-dimensional problems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106687 – volume: 113 year: 2021 ident: 10.1016/j.ast.2025.111028_bib0033 article-title: Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106701 – volume: 42 start-page: 237 year: 2000 ident: 10.1016/j.ast.2025.111028_bib0043 article-title: Uniform design: theory and application publication-title: Technometrics doi: 10.1080/00401706.2000.10486045 – year: 2007 ident: 10.1016/j.ast.2025.111028_bib0048 article-title: A universal parametric geometry representation method - “CST,” – volume: 149 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0010 article-title: High-dimensional aerodynamic shape optimization framework using geometric domain decomposition and data-driven support strategy for wing design publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109152 – year: 2020 ident: 10.1016/j.ast.2025.111028_bib0035 article-title: Development of a conditional generative adversarial network for airfoil shape optimization – volume: 36 start-page: A1500 year: 2014 ident: 10.1016/j.ast.2025.111028_bib0025 article-title: Active subspace methods in theory and practice: applications to kriging surfaces publication-title: SIAM J. Sci. Comput. doi: 10.1137/130916138 – ident: 10.1016/j.ast.2025.111028_bib0036 doi: 10.1007/s00158-021-02851-0 – volume: 36 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0017 article-title: Performance prediction and design optimization of a transonic rotor based on deep transfer learning publication-title: Phys. Fluids doi: 10.1063/5.0221767 – year: 2012 ident: 10.1016/j.ast.2025.111028_bib0050 article-title: A one-equation turbulence model for aerodynamic flows – volume: 217 year: 2023 ident: 10.1016/j.ast.2025.111028_bib0031 article-title: Aeroacoustic airfoil shape optimization enhanced by autoencoders publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119513 – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.ast.2025.111028_bib0029 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 146 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0006 article-title: Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.108963 – volume: 8 start-page: 90805 year: 2020 ident: 10.1016/j.ast.2025.111028_bib0052 article-title: Neural networks-based aerodynamic data modeling: a comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993562 – volume: 33 start-page: 1573 year: 2020 ident: 10.1016/j.ast.2025.111028_bib0027 article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.01.015 – ident: 10.1016/j.ast.2025.111028_bib0041 – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.ast.2025.111028_bib0042 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – start-page: 1942 year: 1995 ident: 10.1016/j.ast.2025.111028_bib0045 article-title: Particle swarm optimization – year: 2015 ident: 10.1016/j.ast.2025.111028_bib0038 article-title: Learning structured output representation using deep conditional generative models – volume: 139 year: 2025 ident: 10.1016/j.ast.2025.111028_bib0032 article-title: A generative design method of airfoil based on conditional variational autoencoder publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109461 – volume: 67 start-page: 50 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0016 article-title: A parallel constrained Bayesian optimization algorithm for high-dimensional expensive problems and its application in optimization of VRB structures publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-024-03758-2 – volume: 18 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0037 article-title: Efficient aerodynamic shape optimization by using unsupervised manifold learning to filter geometric features publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 85 start-page: 784 year: 2007 ident: 10.1016/j.ast.2025.111028_bib0039 article-title: Mesh deformation based on radial basis function interpolation publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.013 – volume: 268 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0003 article-title: Adjoint-based aerodynamic shape optimization with hybridized discontinuous Galerkin methods publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2023.106116 – volume: 15 start-page: 407 year: 1978 ident: 10.1016/j.ast.2025.111028_bib0047 article-title: Wing design by numerical optimization publication-title: J. Aircr. doi: 10.2514/3.58379 – volume: 373 year: 2021 ident: 10.1016/j.ast.2025.111028_bib0018 article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113485 – year: 2004 ident: 10.1016/j.ast.2025.111028_bib0046 article-title: Aerodynamic shape optimization based on free-form deformation – volume: 26 start-page: 1025 year: 1988 ident: 10.1016/j.ast.2025.111028_bib0051 article-title: Lower-upper symmetric-gauss-seidel method for the euler and navier-stokes equations publication-title: AIAA J. doi: 10.2514/3.10007 – volume: 13 start-page: 455 year: 1998 ident: 10.1016/j.ast.2025.111028_bib0013 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 58 start-page: 4243 year: 2020 ident: 10.1016/j.ast.2025.111028_bib0034 article-title: Efficient aerodynamic shape optimization with deep-learning-based geometric filtering publication-title: AIAA J. doi: 10.2514/1.J059254 – volume: 64 start-page: 313 year: 2020 ident: 10.1016/j.ast.2025.111028_bib0023 article-title: Assessing the interplay of shape and physical parameters by unsupervised nonlinear dimensionality reduction methods publication-title: J. Ship Res. doi: 10.5957/JOSR.09180056 – volume: 233 start-page: 5863 year: 2019 ident: 10.1016/j.ast.2025.111028_bib0008 article-title: A review of the artificial neural network surrogate modeling in aerodynamic design – year: 2025 ident: 10.1016/j.ast.2025.111028_bib0028 article-title: Clustered active subspaces for aerodynamic shape optimization – volume: 17 start-page: 1 year: 1999 ident: 10.1016/j.ast.2025.111028_bib0012 article-title: A rigorous framework for optimization of expensive functions by surrogates publication-title: Struct. Optim. doi: 10.1007/BF01197708 – volume: 146 year: 2024 ident: 10.1016/j.ast.2025.111028_bib0019 article-title: Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.108963 – ident: 10.1016/j.ast.2025.111028_bib0024 doi: 10.1007/s00366-025-02211-2 – volume: 84 start-page: 632 year: 2019 ident: 10.1016/j.ast.2025.111028_bib0026 article-title: Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.08.005 – volume: 138 year: 1979 ident: 10.1016/j.ast.2025.111028_bib0053 article-title: Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers – volume: 12 start-page: 307 year: 2019 ident: 10.1016/j.ast.2025.111028_bib0030 article-title: An introduction to variational autoencoders publication-title: FNT Mach. Learn. doi: 10.1561/2200000056 – start-page: 217 year: 2003 ident: 10.1016/j.ast.2025.111028_bib0044 article-title: Generation of random samples, permutations, and stochastic processes |
| SSID | ssj0002942 |
| Score | 2.4176452 |
| Snippet | •An aerodynamic supervised autoencoder is proposed to learn geometric feature correlated with aerodynamic responses with limited aerodynamic data.•The... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111028 |
| SubjectTerms | Aerodynamic shape optimization Autoencoder Feature learning Geometric knowledge Intelligent sampling |
| Title | Geometric feature knowledge-driven surrogate-based optimization via aerodynamic supervised autoencoder |
| URI | https://dx.doi.org/10.1016/j.ast.2025.111028 |
| Volume | 168 |
| WOSCitedRecordID | wos001596376700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKcoBeQDJyIj4ySOfVyh8hKtkFrEqpfISWwpKzVZZTelP78ziZNNtyABEpdoZTne1cy3n8fjeRDy2pksBjNWMLwyYpGOYmbsu5xlmtuQ5waOJH2zieT4WC0W-pu_wV937QSSqlKXl3r1X1UNY6BsTJ39C3WPi8IAfAalwxPUDs8_UvxHW59jm6w8cLar2hmMfjNWNEhuwbptmhr9Zww3sSKogTfOfUJmcIFpWhZ4te9VD5NXyCc4z7SbGgtfFj6kd6heC7OBmLBYrWeKLizzhtP-qDNUv9Z-s8StoMWRRWnqZbkdPWs7_-1ZuWxH6I6O7R-2_GnLqbNC7DorxiyaIzgZIB_OTybcKxLOkA-ukXPfdOcG0fc-h-Vbs8aAWBEj9XOfZn69fvYJrovLgrGHVVD5bbInklirGdmbfz5cfBk3bqG7Xkvj7xguwbtwwJ0v-rUZMzFNTh-Q-_5MQec9Fh6SW7Z6RO5NKk0-Jm5EBfWooLuooDuooFNUUEAFnaCCblFBJ6h4Qr5_ODx9_4n5FhssBybeMIXFjqQsCmHB8oPDpc5CGxkX5cqE8GcVMucmikzmpDSZ1cooqZ3KVWIl1y4Jn5JZVVf2GaFWW-l04eIuIVllSjjHwUbKuBWh5Mk-eTNILF31lVTSIcRwmYJ4UxRv2ot3n0SDTFMP3d7ESwEAv3_t-b-9dkDubsH6gsw2TWtfkjv5xaZcN688TK4APkqIDA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+feature+knowledge-driven+surrogate-based+optimization+via+aerodynamic+supervised+autoencoder&rft.jtitle=Aerospace+science+and+technology&rft.au=Ma%2C+Long&rft.au=Wu%2C+Xiaojing&rft.au=Zuo%2C+Zijun&rft.au=Zhang%2C+Weiwei&rft.date=2026-01-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=168&rft_id=info:doi/10.1016%2Fj.ast.2025.111028&rft.externalDocID=S1270963825010910 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |