Multi-objective Human-robot collaborative batch scheduling in distributed hybrid flowshop via automatic design of local search-reconstruction-feedback algorithm

•The model of multi-objective DHFBSP_HC is constructed.•A configurable local search-reconstruction-feedback algorithm is developed.•An automated algorithm design is embedded into the algorithm designing. The emergence of distributed production models has spurred extensive research on distributed hyb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 203; s. 110983
Hlavní autori: He, Peng, Jiang, Xuchu, Wang, Qi, Zhang, Biao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2025
Predmet:
ISSN:0360-8352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The model of multi-objective DHFBSP_HC is constructed.•A configurable local search-reconstruction-feedback algorithm is developed.•An automated algorithm design is embedded into the algorithm designing. The emergence of distributed production models has spurred extensive research on distributed hybrid flowshop scheduling. Despite advancements in resource allocation for flowshops, most studies overlook human-robot collaboration, which remains essential for complex manufacturing processes in real-world production. Additionally, the rise of multi-variety, small-batch production has driven widespread adoption of batch scheduling. Therefore, this paper introduces a multi-objective distributed hybrid flowshop batch scheduling problem with human-robot collaboration (DHFBSP_HC), aiming to minimize makespan and total energy consumption simultaneously. To address this issue, we propose a local search-reconstruction-feedback (LSRF) algorithm, which consists of four core components: population initialization, local search, reconstruction, and feedback mechanism. Additionally, the algorithm incorporates three configurable strategies, including fitness evaluation approaches, initialization approaches, and objective normalization approaches. These configurable strategies are regarded as categorical parameters, whereas the other parameters are referred to as numerical parameters. To select categorical and numerical parameters that can optimize the results of multi-objective DHFBSP_HC, we introduce the automated algorithm design and use I/F-Race to optimize parameter settings. Through comparisons with several state-of-the-art algorithms, we demonstrate the effectiveness and superiority of the LSRF algorithm in solving the multi-objective DHFBSP_HC.
AbstractList •The model of multi-objective DHFBSP_HC is constructed.•A configurable local search-reconstruction-feedback algorithm is developed.•An automated algorithm design is embedded into the algorithm designing. The emergence of distributed production models has spurred extensive research on distributed hybrid flowshop scheduling. Despite advancements in resource allocation for flowshops, most studies overlook human-robot collaboration, which remains essential for complex manufacturing processes in real-world production. Additionally, the rise of multi-variety, small-batch production has driven widespread adoption of batch scheduling. Therefore, this paper introduces a multi-objective distributed hybrid flowshop batch scheduling problem with human-robot collaboration (DHFBSP_HC), aiming to minimize makespan and total energy consumption simultaneously. To address this issue, we propose a local search-reconstruction-feedback (LSRF) algorithm, which consists of four core components: population initialization, local search, reconstruction, and feedback mechanism. Additionally, the algorithm incorporates three configurable strategies, including fitness evaluation approaches, initialization approaches, and objective normalization approaches. These configurable strategies are regarded as categorical parameters, whereas the other parameters are referred to as numerical parameters. To select categorical and numerical parameters that can optimize the results of multi-objective DHFBSP_HC, we introduce the automated algorithm design and use I/F-Race to optimize parameter settings. Through comparisons with several state-of-the-art algorithms, we demonstrate the effectiveness and superiority of the LSRF algorithm in solving the multi-objective DHFBSP_HC.
ArticleNumber 110983
Author Zhang, Biao
Wang, Qi
Jiang, Xuchu
He, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: He
  fullname: He, Peng
  email: hepeng81236@163.com
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, PR China
– sequence: 2
  givenname: Xuchu
  surname: Jiang
  fullname: Jiang, Xuchu
  email: xuchujiang@zuel.edu.cn
  organization: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, PR China
– sequence: 3
  givenname: Qi
  orcidid: 0009-0009-5279-4272
  surname: Wang
  fullname: Wang, Qi
  email: 202221130148@stu.zuel.edu.cn
  organization: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, PR China
– sequence: 4
  givenname: Biao
  orcidid: 0000-0003-4148-8172
  surname: Zhang
  fullname: Zhang, Biao
  email: zhangbiao@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, PR China
BookMark eNp9kM9uGyEQhzmkUuOkD9AbL7AusH-8q5wiq40jpcolOSMYBi8uhghYV36bPGpJ3XNPc5j5Zub3rchViAEJ-crZmjM-fDusweFaMNGvOWfT2F6Ra9YOrBnbXnwmq5wPjLGun_g1ef-5-OKaqA8IxZ2Q7pajCk2KOhYK0XulY1J_O1oVmGmGGc3iXdhTF6hxuSSnl4KGzmednKHWx995jm_05BRVS4nHigM1mN0-0Gipj6A8zagSzE1CiKHuWOr1GBqLaLSCX1T5fUyuzMdb8skqn_HLv3pDXn98f9numqfnh8ft_VMDfDOVplV934Hm2Fo7maEfu94YNtX4nRViGgRo3Iw9aDMNXIDVVuC40S1TEwhUXXtD-GUvpJhzQivfkjuqdJacyQ-t8iCrVvmhVV60VubuwmB97OQwyVxHAqBxNVeRJrr_0H8A8kaJpQ
Cites_doi 10.1109/TII.2023.3271749
10.1016/j.cor.2008.06.007
10.1007/s10489-022-03853-1
10.1007/s40747-023-01288-w
10.1016/j.swevo.2020.100804
10.1080/0305215X.2023.2198768
10.1016/j.amc.2017.01.004
10.1016/j.cie.2022.108672
10.1007/s10479-018-2969-x
10.1080/00207543.2022.2093680
10.1016/j.promfg.2020.01.354
10.1016/j.jmsy.2024.07.011
10.1109/TII.2021.3128405
10.1016/j.asoc.2024.111508
10.1080/00207543.2020.1780333
10.1016/j.jmsy.2023.09.017
10.1109/TETCI.2020.3022372
10.1016/j.eswa.2022.117256
10.1016/j.swevo.2024.101681
10.1016/j.eswa.2022.119151
10.1016/j.ejor.2009.09.024
10.1186/s10033-022-00683-7
10.1016/j.knosys.2021.107819
10.1109/TEVC.2021.3106168
10.1016/j.knosys.2023.110309
10.1109/TSMC.2021.3120702
10.1016/j.eswa.2021.115453
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.110983
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_110983
S0360835225001299
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c179t-3a554cb1e3ff9d65845dd091094f22962cbe785cbd9612cfbf2e87b30a9c2ea43
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440137500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:48:38 EST 2025
Sat Jul 19 17:11:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Distributed hybrid flowshop scheduling
Multi-objective optimization
Automated algorithm design
Human-robot collaborative scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c179t-3a554cb1e3ff9d65845dd091094f22962cbe785cbd9612cfbf2e87b30a9c2ea43
ORCID 0000-0003-4148-8172
0009-0009-5279-4272
ParticipantIDs crossref_primary_10_1016_j_cie_2025_110983
elsevier_sciencedirect_doi_10_1016_j_cie_2025_110983
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 39. Elsevier BV: 1158–1166. doi:10.1016/j.promfg.2020.01.354.
Zhang, Pan, Meng, Zhang, Jiang (b0155) 2023; 61
Chen, Li, Wang, Wang, Liu, Wang, Wang (b0025) 2024; 76
Wang, Tang, Lei (b0130) 2024; 153
Pan, Lei, Wang (b0090) 2022; 52
Qin, Han, Liu, Li, Pan, X. h. (b0095) 2022; 201
He, Zhang, Lu, Meng, Zou (b0040) 2024; 90
Lu, Gao, Yin, Zhang (b0065) 2024; 20
Engin, Yılmaz (b0030) 2021; 42
Meng, Pan (b0080) 2021; 60
Pan, Gao, Li, Gao (b0085) 2017; 303
Cai, Lei, Li (b0015) 2021; 59
Lu, Zheng, Yin, Wang (b0070) 2024; 56
Tasgetiren, Pan, Liang (b0120) 2009; 36
Wang, Wang (b0135) 2021; 5
Li, Chen, Duan, Mou (b0045) 2022; 18
Sun, Shen, Vogel-Heuser (b0115) 2023; 71
Amirteimoori, Mahdavi, Solimanpur, Ali, Tirkolaee (b0005) 2022; 173
Gholami, Sun (b0035) 2023; 264
Lu, Zhou, Gao, Li, Wang (b0075) 2024; 156
Amirteimoori, Tirkolaee, Simic, Weber (b0010) 2023; 79
Chen, Cheng, Chou (b0020) 2020; 290
Ruiz, Vázquez-Rodríguez (b0100) 2010; 205
Shao, Shao, Pi (b0105) 2021; 183
Zhang, Pan, Meng, Lu, Mou, Li (b0150) 2022; 238
Li, Han, Gao, Li, Li (b0050) 2022; 35
Shao, Shao, Pi (b0110) 2023; 214
Zhang, Lu, Meng, Han, Hu, Jiang (b0145) 2024; 10
Li, Y., Li F., Pan, Q. K., Gao, L., & Tasgetiren, M. F. (2019). An Artificial Bee Colony Algorithm for the Distributed Hybrid Flowshop Scheduling Problem.
Wang, Wang (b0140) 2022; 26
Liu, Zhao, Wang, Cao, Tang, Jonrinaldi (b0060) 2022
He (10.1016/j.cie.2025.110983_b0040) 2024; 90
Zhang (10.1016/j.cie.2025.110983_b0155) 2023; 61
Zhang (10.1016/j.cie.2025.110983_b0150) 2022; 238
Cai (10.1016/j.cie.2025.110983_b0015) 2021; 59
Lu (10.1016/j.cie.2025.110983_b0070) 2024; 56
Pan (10.1016/j.cie.2025.110983_b0090) 2022; 52
Shao (10.1016/j.cie.2025.110983_b0110) 2023; 214
Gholami (10.1016/j.cie.2025.110983_b0035) 2023; 264
Wang (10.1016/j.cie.2025.110983_b0140) 2022; 26
10.1016/j.cie.2025.110983_b0055
Tasgetiren (10.1016/j.cie.2025.110983_b0120) 2009; 36
Chen (10.1016/j.cie.2025.110983_b0025) 2024; 76
Lu (10.1016/j.cie.2025.110983_b0065) 2024; 20
Meng (10.1016/j.cie.2025.110983_b0080) 2021; 60
Qin (10.1016/j.cie.2025.110983_b0095) 2022; 201
Engin (10.1016/j.cie.2025.110983_b0030) 2021; 42
Chen (10.1016/j.cie.2025.110983_b0020) 2020; 290
Amirteimoori (10.1016/j.cie.2025.110983_b0010) 2023; 79
Pan (10.1016/j.cie.2025.110983_b0085) 2017; 303
Shao (10.1016/j.cie.2025.110983_b0105) 2021; 183
Zhang (10.1016/j.cie.2025.110983_b0145) 2024; 10
Lu (10.1016/j.cie.2025.110983_b0075) 2024; 156
Li (10.1016/j.cie.2025.110983_b0050) 2022; 35
Liu (10.1016/j.cie.2025.110983_b0060) 2022
Sun (10.1016/j.cie.2025.110983_b0115) 2023; 71
Wang (10.1016/j.cie.2025.110983_b0135) 2021; 5
Wang (10.1016/j.cie.2025.110983_b0130) 2024; 153
Amirteimoori (10.1016/j.cie.2025.110983_b0005) 2022; 173
Ruiz (10.1016/j.cie.2025.110983_b0100) 2010; 205
Li (10.1016/j.cie.2025.110983_b0045) 2022; 18
References_xml – volume: 238
  year: 2022
  ident: b0150
  article-title: An Automatic Multi-Objective Evolutionary Algorithm for the Hybrid Flowshop Scheduling Problem with Consistent Sublots
– volume: 60
  year: 2021
  ident: b0080
  article-title: A Distributed Heterogeneous Permutation Flowshop Scheduling Problem with Lot-Streaming and Carryover Sequence-Dependent Setup Time
– volume: 56
  start-page: 792
  year: 2024
  end-page: 810
  ident: b0070
  article-title: An Improved Iterated Greedy Algorithm for the Distributed Hybrid Flowshop Scheduling Problem
– volume: 5
  start-page: 947
  year: 2021
  end-page: 961
  ident: b0135
  article-title: A Bi-Population Cooperative Memetic Algorithm for Distributed Hybrid Flow-Shop Scheduling
– volume: 10
  start-page: 2781
  year: 2024
  end-page: 2809
  ident: b0145
  article-title: Automatic Algorithm Design of Distributed Hybrid Flowshop Scheduling with Consistent Sublots
– year: 2022
  ident: b0060
  article-title: An Estimation of Distribution Algorithm with Multiple Intensification Strategies for Two-Stage Hybrid Flow-Shop Scheduling Problem with Sequence-Dependent Setup Time
  publication-title: , June.
– volume: 76
  start-page: 188
  year: 2024
  end-page: 206
  ident: b0025
  article-title: Reinforcement Learning for Distributed Hybrid Flowshop Scheduling Problem with Variable Task Splitting towards Mass Personalized Manufacturing
– volume: 36
  start-page: 1900
  year: 2009
  end-page: 1915
  ident: b0120
  article-title: A Discrete Differential Evolution Algorithm for the Single Machine Total Weighted Tardiness Problem with Sequence Dependent Setup Times
– volume: 173
  year: 2022
  ident: b0005
  article-title: A Parallel Hybrid PSO-GA Algorithm for the Flexible Flow-Shop Scheduling with Transportation
– volume: 183
  year: 2021
  ident: b0105
  article-title: Multi-Objective Evolutionary Algorithm Based on Multiple Neighborhoods Local Search for Multi-Objective Distributed Hybrid Flow Shop Scheduling Problem
– volume: 290
  start-page: 813
  year: 2020
  end-page: 836
  ident: b0020
  article-title: Multi-Objective Genetic Algorithm for Energy-Efficient Hybrid Flow Shop Scheduling with Lot Streaming
– volume: 71
  start-page: 390
  year: 2023
  end-page: 405
  ident: b0115
  article-title: A Hybrid Genetic Algorithm for Distributed Hybrid Blocking Flowshop Scheduling Problem
– volume: 26
  start-page: 461
  year: 2022
  end-page: 475
  ident: b0140
  article-title: A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling
– volume: 59
  start-page: 5404
  year: 2021
  end-page: 5421
  ident: b0015
  article-title: A Shuffled Frog-Leaping Algorithm with Memeplex Quality for Bi-Objective Distributed Scheduling in Hybrid Flow Shop
– volume: 35
  start-page: 12
  year: 2022
  ident: b0050
  article-title: Integrated Production and Transportation Scheduling Method in Hybrid Flow Shop
– volume: 18
  start-page: 5318
  year: 2022
  end-page: 5329
  ident: b0045
  article-title: KMOEA: A Knowledge-Based Multiobjective Algorithm for Distributed Hybrid Flow Shop in a Prefabricated System
– volume: 61
  start-page: 1013
  year: 2023
  end-page: 1038
  ident: b0155
  article-title: A Decomposition-Based Multi-Objective Evolutionary Algorithm for Hybrid Flowshop Rescheduling Problem with Consistent Sublots
– volume: 20
  start-page: 963
  year: 2024
  end-page: 971
  ident: b0065
  article-title: Human–Robot Collaborative Scheduling in Energy-Efficient Welding Shop
– volume: 52
  start-page: 5295
  year: 2022
  end-page: 5307
  ident: b0090
  article-title: A Bi-Population Evolutionary Algorithm With Feedback for Energy-Efficient Fuzzy Flexible Job Shop Scheduling
– volume: 156
  year: 2024
  ident: b0075
  article-title: Modeling and Multi-Objective Optimization for Energy-Aware Scheduling of Distributed Hybrid Flow-Shop
– volume: 153
  year: 2024
  ident: b0130
  article-title: A Feedback-Based Artificial Bee Colony Algorithm for Energy-Efficient Flexible Flow Shop Scheduling Problem with Batch Processing Machines
– volume: 264
  year: 2023
  ident: b0035
  article-title: Toward Automated Algorithm Configuration for Distributed Hybrid Flow Shop Scheduling with Multiprocessor Tasks
– volume: 303
  start-page: 89
  year: 2017
  end-page: 112
  ident: b0085
  article-title: Effective Metaheuristics for Scheduling a Hybrid Flowshop with Sequence-Dependent Setup Times
– volume: 214
  year: 2023
  ident: b0110
  article-title: Modelling and Optimization of Distributed Heterogeneous Hybrid Flow Shop Lot-Streaming Scheduling Problem
– reference: Li, Y., Li F., Pan, Q. K., Gao, L., & Tasgetiren, M. F. (2019). An Artificial Bee Colony Algorithm for the Distributed Hybrid Flowshop Scheduling Problem.
– reference: 39. Elsevier BV: 1158–1166. doi:10.1016/j.promfg.2020.01.354.
– volume: 90
  year: 2024
  ident: b0040
  article-title: Optimizing Distributed Reentrant Heterogeneous Hybrid Flowshop Batch Scheduling Problem: Iterative Construction-Local Search-Reconstruction Algorithm
– volume: 201
  year: 2022
  ident: b0095
  article-title: A Collaborative Iterative Greedy Algorithm for the Scheduling of Distributed Heterogeneous Hybrid Flow Shop with Blocking Constraints
– volume: 205
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0100
  article-title: The Hybrid Flow Shop Scheduling Problem
– volume: 79
  year: 2023
  ident: b0010
  article-title: A Parallel Heuristic for Hybrid Job Shop Scheduling Problem Considering Conflict-Free AGV Routing
– volume: 42
  start-page: 451
  year: 2021
  end-page: 463
  ident: b0030
  article-title: A Fuzzy Logic Based Methodology for Multi-Objective Hybrid Flow Shop Scheduling with Multi-Processor Tasks Problems and Solving with an Efficient Genetic Algorithm
– volume: 20
  start-page: 963
  issue: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0065
  article-title: Human–Robot Collaborative Scheduling in Energy-Efficient Welding Shop
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3271749
– volume: 36
  start-page: 1900
  issue: 6
  year: 2009
  ident: 10.1016/j.cie.2025.110983_b0120
  article-title: A Discrete Differential Evolution Algorithm for the Single Machine Total Weighted Tardiness Problem with Sequence Dependent Setup Times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.06.007
– year: 2022
  ident: 10.1016/j.cie.2025.110983_b0060
  article-title: An Estimation of Distribution Algorithm with Multiple Intensification Strategies for Two-Stage Hybrid Flow-Shop Scheduling Problem with Sequence-Dependent Setup Time
  publication-title: Applied Intelligence, June.
  doi: 10.1007/s10489-022-03853-1
– volume: 10
  start-page: 2781
  issue: 2
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0145
  article-title: Automatic Algorithm Design of Distributed Hybrid Flowshop Scheduling with Consistent Sublots
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-023-01288-w
– volume: 60
  year: 2021
  ident: 10.1016/j.cie.2025.110983_b0080
  article-title: A Distributed Heterogeneous Permutation Flowshop Scheduling Problem with Lot-Streaming and Carryover Sequence-Dependent Setup Time
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100804
– volume: 56
  start-page: 792
  issue: 5
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0070
  article-title: An Improved Iterated Greedy Algorithm for the Distributed Hybrid Flowshop Scheduling Problem
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2023.2198768
– volume: 303
  start-page: 89
  year: 2017
  ident: 10.1016/j.cie.2025.110983_b0085
  article-title: Effective Metaheuristics for Scheduling a Hybrid Flowshop with Sequence-Dependent Setup Times
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2017.01.004
– volume: 42
  start-page: 451
  issue: 1
  year: 2021
  ident: 10.1016/j.cie.2025.110983_b0030
  article-title: A Fuzzy Logic Based Methodology for Multi-Objective Hybrid Flow Shop Scheduling with Multi-Processor Tasks Problems and Solving with an Efficient Genetic Algorithm
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 173
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0005
  article-title: A Parallel Hybrid PSO-GA Algorithm for the Flexible Flow-Shop Scheduling with Transportation
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108672
– volume: 290
  start-page: 813
  issue: 1–2
  year: 2020
  ident: 10.1016/j.cie.2025.110983_b0020
  article-title: Multi-Objective Genetic Algorithm for Energy-Efficient Hybrid Flow Shop Scheduling with Lot Streaming
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-018-2969-x
– volume: 61
  start-page: 1013
  issue: 3
  year: 2023
  ident: 10.1016/j.cie.2025.110983_b0155
  article-title: A Decomposition-Based Multi-Objective Evolutionary Algorithm for Hybrid Flowshop Rescheduling Problem with Consistent Sublots
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2093680
– ident: 10.1016/j.cie.2025.110983_b0055
  doi: 10.1016/j.promfg.2020.01.354
– volume: 76
  start-page: 188
  issue: October
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0025
  article-title: Reinforcement Learning for Distributed Hybrid Flowshop Scheduling Problem with Variable Task Splitting towards Mass Personalized Manufacturing
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2024.07.011
– volume: 18
  start-page: 5318
  issue: 8
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0045
  article-title: KMOEA: A Knowledge-Based Multiobjective Algorithm for Distributed Hybrid Flow Shop in a Prefabricated System
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3128405
– volume: 156
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0075
  article-title: Modeling and Multi-Objective Optimization for Energy-Aware Scheduling of Distributed Hybrid Flow-Shop
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2024.111508
– volume: 79
  issue: June
  year: 2023
  ident: 10.1016/j.cie.2025.110983_b0010
  article-title: A Parallel Heuristic for Hybrid Job Shop Scheduling Problem Considering Conflict-Free AGV Routing
  publication-title: Swarm and Evolutionary Computation
– volume: 59
  start-page: 5404
  issue: 18
  year: 2021
  ident: 10.1016/j.cie.2025.110983_b0015
  article-title: A Shuffled Frog-Leaping Algorithm with Memeplex Quality for Bi-Objective Distributed Scheduling in Hybrid Flow Shop
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1780333
– volume: 71
  start-page: 390
  issue: December
  year: 2023
  ident: 10.1016/j.cie.2025.110983_b0115
  article-title: A Hybrid Genetic Algorithm for Distributed Hybrid Blocking Flowshop Scheduling Problem
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.09.017
– volume: 5
  start-page: 947
  issue: 6
  year: 2021
  ident: 10.1016/j.cie.2025.110983_b0135
  article-title: A Bi-Population Cooperative Memetic Algorithm for Distributed Hybrid Flow-Shop Scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2020.3022372
– volume: 201
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0095
  article-title: A Collaborative Iterative Greedy Algorithm for the Scheduling of Distributed Heterogeneous Hybrid Flow Shop with Blocking Constraints
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117256
– volume: 90
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0040
  article-title: Optimizing Distributed Reentrant Heterogeneous Hybrid Flowshop Batch Scheduling Problem: Iterative Construction-Local Search-Reconstruction Algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101681
– volume: 214
  year: 2023
  ident: 10.1016/j.cie.2025.110983_b0110
  article-title: Modelling and Optimization of Distributed Heterogeneous Hybrid Flow Shop Lot-Streaming Scheduling Problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119151
– volume: 205
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2025.110983_b0100
  article-title: The Hybrid Flow Shop Scheduling Problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.09.024
– volume: 35
  start-page: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0050
  article-title: Integrated Production and Transportation Scheduling Method in Hybrid Flow Shop
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.1186/s10033-022-00683-7
– volume: 238
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0150
  article-title: An Automatic Multi-Objective Evolutionary Algorithm for the Hybrid Flowshop Scheduling Problem with Consistent Sublots
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107819
– volume: 26
  start-page: 461
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0140
  article-title: A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3106168
– volume: 264
  year: 2023
  ident: 10.1016/j.cie.2025.110983_b0035
  article-title: Toward Automated Algorithm Configuration for Distributed Hybrid Flow Shop Scheduling with Multiprocessor Tasks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110309
– volume: 52
  start-page: 5295
  issue: 8
  year: 2022
  ident: 10.1016/j.cie.2025.110983_b0090
  article-title: A Bi-Population Evolutionary Algorithm With Feedback for Energy-Efficient Fuzzy Flexible Job Shop Scheduling
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2021.3120702
– volume: 153
  issue: March
  year: 2024
  ident: 10.1016/j.cie.2025.110983_b0130
  article-title: A Feedback-Based Artificial Bee Colony Algorithm for Energy-Efficient Flexible Flow Shop Scheduling Problem with Batch Processing Machines
  publication-title: Applied Soft Computing
– volume: 183
  year: 2021
  ident: 10.1016/j.cie.2025.110983_b0105
  article-title: Multi-Objective Evolutionary Algorithm Based on Multiple Neighborhoods Local Search for Multi-Objective Distributed Hybrid Flow Shop Scheduling Problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115453
SSID ssj0004591
Score 2.449964
Snippet •The model of multi-objective DHFBSP_HC is constructed.•A configurable local search-reconstruction-feedback algorithm is developed.•An automated algorithm...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110983
SubjectTerms Automated algorithm design
Distributed hybrid flowshop scheduling
Human-robot collaborative scheduling
Multi-objective optimization
Title Multi-objective Human-robot collaborative batch scheduling in distributed hybrid flowshop via automatic design of local search-reconstruction-feedback algorithm
URI https://dx.doi.org/10.1016/j.cie.2025.110983
Volume 203
WOSCitedRecordID wos001440137500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQ5SUfOBG52s1jEx8LKoIeKhBF2lvkJ8l2iVe72W37ZxA_lbGdbNItIEDiEkWW4kSeLzOfx_NA6KXQo7GUckQyrjiJNfzpGWcZ4e5QTQJFz3yzifTkJJtM6IfB4FubC7OepVWVXVzQ-X8VNYyBsG3q7F-IezMpDMA9CB2uIHa4_pHgXUotMXzqVZl305OF4aYOelK3QeughosAtrdgbmZNbou0hXRtDywgosWlTecK9MycLwszD9Y2gWtVG1_lVbrYD0s2nT0M_EISt8PeVKUlGqwjZ-IsYLMvZlHWxdc-HW57SiwdAsuujYjqyiR23lofT9yNHJeNs3uyEsWqOxrwgx_La07x1yUzfTdHmHRBhd731ubfdMFOPucLsBUlV_R56IomXLcN3k0xPQCdeWDf4Iqt-i46WyW3P9l5HTVNnKOO3kC7YZpQ0Jq7h--PJse9evS-J2P7He25uYsg3HrRz5lPj82c3kN3mm0IPvTwuY8GqtpDd5stCW4U_nIP3e7Vq3yAvm9hC_ewha9gCzts4Q5buKxwD1vYYwu32MKALbzBFvbYwkZjhy38e2zhDbYeos9vj07fvCNNiw8iwBLUJGJAZwUfqUhrKi0bTqS0FJbGOgzpOBRcpVkiuKRAxYXmOlRZyqMhoyJULI4eoZ3KVOoxwqEUnPEooZGOYJYhj9OMMTA5MNFQD8f76FW7_PncV3LJ2xDHaQ7rmltZ5V5W-yhuBZQ3VNRTzBzQ9OvHnvzbY0_RrQ7yz9AOrKN6jm6KdV0uFy8azP0A0Xy3aA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Human-robot+collaborative+batch+scheduling+in+distributed+hybrid+flowshop+via+automatic+design+of+local+search-reconstruction-feedback+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=He%2C+Peng&rft.au=Jiang%2C+Xuchu&rft.au=Wang%2C+Qi&rft.au=Zhang%2C+Biao&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=203&rft_id=info:doi/10.1016%2Fj.cie.2025.110983&rft.externalDocID=S0360835225001299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon