A NOTE ON A CLASSICAL CONNECTION BETWEEN PARTITIONS AND DIVISORS

In this note, we consider the number of k’s in all the partitions of n in order to provide a new proof of a classical identity involving Euler’s partition function p(n) and the sum of the positive divisors function a(n). New relations connecting classical functions of multiplicative number theory wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals. Series on mathematics and its applications Jg. 15; H. 1-2; S. 163 - 174
1. Verfasser: Mercat, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 2023
ISSN:2066-5997, 2066-6594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we consider the number of k’s in all the partitions of n in order to provide a new proof of a classical identity involving Euler’s partition function p(n) and the sum of the positive divisors function a(n). New relations connecting classical functions of multiplicative number theory with the partition function p(n) from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1’s in all the partitions of n is derived in this context.
ISSN:2066-5997
2066-6594
DOI:10.56082/annalsarscimath.2023.1-2.163