Multitarget Stochastic Configuration Network and Applications

Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence Jg. 4; H. 2; S. 338 - 348
Hauptverfasser: Wang, Qianjin, Hong, Qiqiang, Wu, Shang, Dai, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2023
Schlagworte:
ISSN:2691-4581, 2691-4581
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance of these SCN-based models, in this article, a novel multitarget SCN (MTSCN) modeling approach is presented. The L 2,1 norm of a structure matrix can be utilized to explicitly reveal the correlations between multiple targets and an L 2 term are attached to the cost function of SCN. Considering the nonsmoothness of the constructed cost function, an alternating optimization algorithm is adopted to compute the structure matrix and the output weights of MTSCN. Then, a new supervisory mechanism is proposed to ensure the convergence of MTSCN. Finally, experimental results using the synthetic data and several real-world datasets show that the developed MTSCN is more superior to other modeling methods in resolving multitarget modeling problems.
AbstractList Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance of these SCN-based models, in this article, a novel multitarget SCN (MTSCN) modeling approach is presented. The L 2,1 norm of a structure matrix can be utilized to explicitly reveal the correlations between multiple targets and an L 2 term are attached to the cost function of SCN. Considering the nonsmoothness of the constructed cost function, an alternating optimization algorithm is adopted to compute the structure matrix and the output weights of MTSCN. Then, a new supervisory mechanism is proposed to ensure the convergence of MTSCN. Finally, experimental results using the synthetic data and several real-world datasets show that the developed MTSCN is more superior to other modeling methods in resolving multitarget modeling problems.
Author Wu, Shang
Wang, Qianjin
Dai, Wei
Hong, Qiqiang
Author_xml – sequence: 1
  givenname: Qianjin
  orcidid: 0000-0002-4076-9493
  surname: Wang
  fullname: Wang, Qianjin
  email: wangqianjinabc@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Qiqiang
  surname: Hong
  fullname: Hong, Qiqiang
  email: qiqianghongcumt@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Shang
  surname: Wu
  fullname: Wu, Shang
  email: wushangcumt@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3057-7225
  surname: Dai
  fullname: Dai, Wei
  email: daiwei_neu@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
BookMark eNp9kE1PwzAMhiM0JMbYHYlL_0CHnfQjPXCoJj4mDTgwzpWTpiNQ2inJhPj3dGxCiAMnW5Ye2-9zykZd3xnGzhFmiFBcrsrFjAPnM4EZT3M4YmOeFRgnqcTRr_6ETb1_BQCeIuc8H7Or-20bbCC3NiF6Cr1-IR-sjuZ919j11lGwfRc9mPDRu7eIujoqN5vW6u-5P2PHDbXeTA91wp5vrlfzu3j5eLuYl8tYYy5DLIo80WhIUJYayFRDCggUwTBqgCuZSi6BauQaC8hrWZMwCSqhQGWEUkwY7Pdq13vvTFNtnH0n91khVDsD1WCg2hmoDgYGJPuD6CHm7uvgyLb_gRd70Bpjfu4MCVJe5OILLG5q1Q
CODEN ITAICB
CitedBy_id crossref_primary_10_1016_j_ins_2024_121480
crossref_primary_10_1109_TII_2024_3441640
crossref_primary_10_1016_j_ins_2024_120195
crossref_primary_10_1016_j_neucom_2024_127833
crossref_primary_10_1109_TAI_2022_3209956
crossref_primary_10_1109_TFUZZ_2025_3577008
crossref_primary_10_1007_s13042_023_02075_2
crossref_primary_10_1109_TII_2024_3438234
crossref_primary_10_1007_s13042_024_02386_y
crossref_primary_10_1109_TASE_2025_3579737
Cites_doi 10.1016/j.ins.2019.04.055
10.1016/j.ins.2019.01.062
10.1016/j.ins.2017.06.017
10.1109/TCYB.2017.2734043
10.1016/j.patrec.2021.04.025
10.1016/j.ins.2019.02.066
10.1016/j.neucom.2020.02.029
10.1016/j.knosys.2018.06.032
10.1109/TNNLS.2017.2651068
10.1007/978-3-319-24282-8_9
10.1016/0925-2312(94)90053-1
10.1016/j.ins.2020.05.112
10.1109/TNNLS.2021.3053306
10.1016/j.scitotenv.2020.136991
10.1109/TNNLS.2018.2866622
10.1109/TNSRE.2017.2711264
10.1007/s10994-016-5546-z
10.1109/TII.2019.2954351
10.16383/j.aas.c190602
10.1109/TAFFC.2020.3043135
10.1109/LGRS.2011.2109934
10.1016/j.media.2015.07.003
10.1109/TII.2021.3096840
10.1109/TNNLS.2017.2716952
10.1016/j.ins.2016.12.007
10.1109/TCYB.2021.3061094
10.1109/TNNLS.2020.2967816
10.1109/TII.2019.2892873
10.1109/TCYB.2018.2857815
10.1109/TPAMI.2017.2688363
10.1016/j.ins.2017.07.003
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2022.3162570
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 348
ExternalDocumentID 10_1109_TAI_2022_3162570
9745297
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003293; 61973306
  funderid: 10.13039/501100001809
– fundername: Funding for School-Level Research Projects of Yancheng Institute of Technology
  grantid: xjr2019018
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: SJCX21_0990
– fundername: Nature Science Foundation of Jiangsu Province
  grantid: BK20191043; BK20200086
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c178t-3974c1ea3a65e06bfab0a0ba0ea3f02b858280ad12c1907d8da3e41b3b0b6a183
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:38:04 EST 2025
Tue Nov 18 21:31:46 EST 2025
Wed Aug 27 07:40:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c178t-3974c1ea3a65e06bfab0a0ba0ea3f02b858280ad12c1907d8da3e41b3b0b6a183
ORCID 0000-0003-3057-7225
0000-0002-4076-9493
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TAI_2022_3162570
ieee_primary_9745297
crossref_primary_10_1109_TAI_2022_3162570
PublicationCentury 2000
PublicationDate 2023-April
2023-4-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Nie (ref30)
ref24
ref23
ref26
ref25
Ando (ref4) 2005; 6
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1016/j.ins.2019.04.055
– ident: ref26
  doi: 10.1016/j.ins.2019.01.062
– ident: ref10
  doi: 10.1016/j.ins.2017.06.017
– ident: ref18
  doi: 10.1109/TCYB.2017.2734043
– ident: ref7
  doi: 10.1016/j.patrec.2021.04.025
– ident: ref19
  doi: 10.1016/j.ins.2019.02.066
– ident: ref25
  doi: 10.1016/j.neucom.2020.02.029
– ident: ref11
  doi: 10.1016/j.knosys.2018.06.032
– ident: ref8
  doi: 10.1109/TNNLS.2017.2651068
– ident: ref6
  doi: 10.1007/978-3-319-24282-8_9
– ident: ref12
  doi: 10.1016/0925-2312(94)90053-1
– ident: ref29
  doi: 10.1016/j.ins.2020.05.112
– ident: ref27
  doi: 10.1109/TNNLS.2021.3053306
– ident: ref1
  doi: 10.1016/j.scitotenv.2020.136991
– ident: ref15
  doi: 10.1109/TNNLS.2018.2866622
– ident: ref31
  doi: 10.1109/TNSRE.2017.2711264
– ident: ref32
  doi: 10.1007/s10994-016-5546-z
– ident: ref23
  doi: 10.1109/TII.2019.2954351
– volume: 6
  start-page: 1817
  year: 2005
  ident: ref4
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.16383/j.aas.c190602
– ident: ref2
  doi: 10.1109/TAFFC.2020.3043135
– ident: ref33
  doi: 10.1109/LGRS.2011.2109934
– ident: ref3
  doi: 10.1016/j.media.2015.07.003
– ident: ref28
  doi: 10.1109/TII.2021.3096840
– ident: ref14
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref17
  doi: 10.1016/j.ins.2016.12.007
– ident: ref5
  doi: 10.1109/TCYB.2021.3061094
– ident: ref24
  doi: 10.1109/TNNLS.2020.2967816
– ident: ref13
  doi: 10.1109/TII.2019.2892873
– ident: ref16
  doi: 10.1109/TCYB.2018.2857815
– ident: ref9
  doi: 10.1109/TPAMI.2017.2688363
– start-page: 1813
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Efficient and robust feature selection via joint 2,1-norms minimization
– ident: ref20
  doi: 10.1016/j.ins.2017.07.003
SSID ssj0002512227
Score 2.2221227
Snippet Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 338
SubjectTerms Adaptation models
Alternating optimization algorithm
Correlation
Data models
multitarget regression
Predictive models
stochastic configuration network (SCN)
Stochastic processes
structure matrix
supervisory mechanism
Task analysis
Training
Title Multitarget Stochastic Configuration Network and Applications
URI https://ieeexplore.ieee.org/document/9745297
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MXp05xfowcvAjWJemapAcPQzb04BCcsFvJV3Ug3ZidR_92k7YrE0QQcighhfB7Ce-9vI8fwKXAacSkIoHSsQ0GxPBAOTkHlgqWap0Syk1BNsEnEzGbxU8NuK5rYay1RfKZvfGfRSzfLPTaP5X1ne0b0Zg3ock5K2u16vcUr6cp5ZtIJI770-GD8_8odW4p81xtPzTPFpVKoUnG7f_tYR_2KosRDUsRH0DDZofQ3rAxoOpyduC2rKUtMrvRc77Qb9L3YEa-pm_-ui4ljSZl2jeSmUHDreD1EbyMR9O7-6AiRwg04SIPnB0x0MTKULLIYqZSqbDESmI3lWKqhI-HYWkI1U7ncyOMDO2AqFBhxaS7yMfQyhaZPQHkq1NTy0gqnIsq3FDGhJHiUWS5U-m8C_0NcImuOod7Aov3pPAgcJw4qBMPdVJB3YWr-o9l2TXjj7Udj3K9rgL49PfpM9j1hO9l7sw5tPLV2l7Ajv7M5x-rHjQfv0a94mB8A53ytsU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKejFqVOcnzl4EaxL0rVJDx6GODacRXCCt5Kv6kA6mZ1_v0nblQkiCDmUkEL4vYT3Xt7HD-CC4zQIhSSeVJHxekQzT1o5e4byMFUqJZTpgmyCxTF_eYkeG3BV18IYY4rkM3PtPotYvp6phXsq61rbN6ARW4N1x5wVlNVa9YuK09SUsmUsEkfdSX9kPUBKrWMaOra2H7pnhUyl0CWD1v92sQPblc2I-qWQd6Fhsj1oLfkYUHU923BTVtMWud3oKZ-pN-G6MCNX1Td9XZSyRnGZ-I1EplF_JXy9D8-Du8nt0KvoETxFGM89a0n0FDHCF2FgcChTIbHAUmA7lWIquYuIYaEJVVbrM8218E2PSF9iGQp7lQ-gmc0ycwjI1aemJiQpt04qt0Nq7QeSBYFhVqmzDnSXwCWq6h3uKCzek8KHwFFioU4c1EkFdQcu6z8-yr4Zf6xtO5TrdRXAR79Pn8PmcPIwTsaj-P4Ythz9e5lJcwLNfL4wp7ChvvLp5_ysOB7fAGy43w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Stochastic+Configuration+Network+and+Applications&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Wang%2C+Qianjin&rft.au=Hong%2C+Qiqiang&rft.au=Wu%2C+Shang&rft.au=Dai%2C+Wei&rft.date=2023-04-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=4&rft.issue=2&rft.spage=338&rft.epage=348&rft_id=info:doi/10.1109%2FTAI.2022.3162570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2022_3162570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon