Multitarget Stochastic Configuration Network and Applications
Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance o...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on artificial intelligence Jg. 4; H. 2; S. 338 - 348 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2023
|
| Schlagworte: | |
| ISSN: | 2691-4581, 2691-4581 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance of these SCN-based models, in this article, a novel multitarget SCN (MTSCN) modeling approach is presented. The L 2,1 norm of a structure matrix can be utilized to explicitly reveal the correlations between multiple targets and an L 2 term are attached to the cost function of SCN. Considering the nonsmoothness of the constructed cost function, an alternating optimization algorithm is adopted to compute the structure matrix and the output weights of MTSCN. Then, a new supervisory mechanism is proposed to ensure the convergence of MTSCN. Finally, experimental results using the synthetic data and several real-world datasets show that the developed MTSCN is more superior to other modeling methods in resolving multitarget modeling problems. |
|---|---|
| AbstractList | Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is that they ignore the intertarget correlations, which have an important effect on improving the modeling accuracy. To enhance the performance of these SCN-based models, in this article, a novel multitarget SCN (MTSCN) modeling approach is presented. The L 2,1 norm of a structure matrix can be utilized to explicitly reveal the correlations between multiple targets and an L 2 term are attached to the cost function of SCN. Considering the nonsmoothness of the constructed cost function, an alternating optimization algorithm is adopted to compute the structure matrix and the output weights of MTSCN. Then, a new supervisory mechanism is proposed to ensure the convergence of MTSCN. Finally, experimental results using the synthetic data and several real-world datasets show that the developed MTSCN is more superior to other modeling methods in resolving multitarget modeling problems. |
| Author | Wu, Shang Wang, Qianjin Dai, Wei Hong, Qiqiang |
| Author_xml | – sequence: 1 givenname: Qianjin orcidid: 0000-0002-4076-9493 surname: Wang fullname: Wang, Qianjin email: wangqianjinabc@163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Qiqiang surname: Hong fullname: Hong, Qiqiang email: qiqianghongcumt@163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 3 givenname: Shang surname: Wu fullname: Wu, Shang email: wushangcumt@163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 4 givenname: Wei orcidid: 0000-0003-3057-7225 surname: Dai fullname: Dai, Wei email: daiwei_neu@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| BookMark | eNp9kE1PwzAMhiM0JMbYHYlL_0CHnfQjPXCoJj4mDTgwzpWTpiNQ2inJhPj3dGxCiAMnW5Ye2-9zykZd3xnGzhFmiFBcrsrFjAPnM4EZT3M4YmOeFRgnqcTRr_6ETb1_BQCeIuc8H7Or-20bbCC3NiF6Cr1-IR-sjuZ919j11lGwfRc9mPDRu7eIujoqN5vW6u-5P2PHDbXeTA91wp5vrlfzu3j5eLuYl8tYYy5DLIo80WhIUJYayFRDCggUwTBqgCuZSi6BauQaC8hrWZMwCSqhQGWEUkwY7Pdq13vvTFNtnH0n91khVDsD1WCg2hmoDgYGJPuD6CHm7uvgyLb_gRd70Bpjfu4MCVJe5OILLG5q1Q |
| CODEN | ITAICB |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121480 crossref_primary_10_1109_TII_2024_3441640 crossref_primary_10_1016_j_ins_2024_120195 crossref_primary_10_1016_j_neucom_2024_127833 crossref_primary_10_1109_TAI_2022_3209956 crossref_primary_10_1109_TFUZZ_2025_3577008 crossref_primary_10_1007_s13042_023_02075_2 crossref_primary_10_1109_TII_2024_3438234 crossref_primary_10_1007_s13042_024_02386_y crossref_primary_10_1109_TASE_2025_3579737 |
| Cites_doi | 10.1016/j.ins.2019.04.055 10.1016/j.ins.2019.01.062 10.1016/j.ins.2017.06.017 10.1109/TCYB.2017.2734043 10.1016/j.patrec.2021.04.025 10.1016/j.ins.2019.02.066 10.1016/j.neucom.2020.02.029 10.1016/j.knosys.2018.06.032 10.1109/TNNLS.2017.2651068 10.1007/978-3-319-24282-8_9 10.1016/0925-2312(94)90053-1 10.1016/j.ins.2020.05.112 10.1109/TNNLS.2021.3053306 10.1016/j.scitotenv.2020.136991 10.1109/TNNLS.2018.2866622 10.1109/TNSRE.2017.2711264 10.1007/s10994-016-5546-z 10.1109/TII.2019.2954351 10.16383/j.aas.c190602 10.1109/TAFFC.2020.3043135 10.1109/LGRS.2011.2109934 10.1016/j.media.2015.07.003 10.1109/TII.2021.3096840 10.1109/TNNLS.2017.2716952 10.1016/j.ins.2016.12.007 10.1109/TCYB.2021.3061094 10.1109/TNNLS.2020.2967816 10.1109/TII.2019.2892873 10.1109/TCYB.2018.2857815 10.1109/TPAMI.2017.2688363 10.1016/j.ins.2017.07.003 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAI.2022.3162570 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2691-4581 |
| EndPage | 348 |
| ExternalDocumentID | 10_1109_TAI_2022_3162570 9745297 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003293; 61973306 funderid: 10.13039/501100001809 – fundername: Funding for School-Level Research Projects of Yancheng Institute of Technology grantid: xjr2019018 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province grantid: SJCX21_0990 – fundername: Nature Science Foundation of Jiangsu Province grantid: BK20191043; BK20200086 |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c178t-3974c1ea3a65e06bfab0a0ba0ea3f02b858280ad12c1907d8da3e41b3b0b6a183 |
| IEDL.DBID | RIE |
| ISSN | 2691-4581 |
| IngestDate | Sat Nov 29 07:38:04 EST 2025 Tue Nov 18 21:31:46 EST 2025 Wed Aug 27 07:40:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c178t-3974c1ea3a65e06bfab0a0ba0ea3f02b858280ad12c1907d8da3e41b3b0b6a183 |
| ORCID | 0000-0003-3057-7225 0000-0002-4076-9493 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAI_2022_3162570 ieee_primary_9745297 crossref_primary_10_1109_TAI_2022_3162570 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-April 2023-4-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-April |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on artificial intelligence |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Nie (ref30) ref24 ref23 ref26 ref25 Ando (ref4) 2005; 6 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1016/j.ins.2019.04.055 – ident: ref26 doi: 10.1016/j.ins.2019.01.062 – ident: ref10 doi: 10.1016/j.ins.2017.06.017 – ident: ref18 doi: 10.1109/TCYB.2017.2734043 – ident: ref7 doi: 10.1016/j.patrec.2021.04.025 – ident: ref19 doi: 10.1016/j.ins.2019.02.066 – ident: ref25 doi: 10.1016/j.neucom.2020.02.029 – ident: ref11 doi: 10.1016/j.knosys.2018.06.032 – ident: ref8 doi: 10.1109/TNNLS.2017.2651068 – ident: ref6 doi: 10.1007/978-3-319-24282-8_9 – ident: ref12 doi: 10.1016/0925-2312(94)90053-1 – ident: ref29 doi: 10.1016/j.ins.2020.05.112 – ident: ref27 doi: 10.1109/TNNLS.2021.3053306 – ident: ref1 doi: 10.1016/j.scitotenv.2020.136991 – ident: ref15 doi: 10.1109/TNNLS.2018.2866622 – ident: ref31 doi: 10.1109/TNSRE.2017.2711264 – ident: ref32 doi: 10.1007/s10994-016-5546-z – ident: ref23 doi: 10.1109/TII.2019.2954351 – volume: 6 start-page: 1817 year: 2005 ident: ref4 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.16383/j.aas.c190602 – ident: ref2 doi: 10.1109/TAFFC.2020.3043135 – ident: ref33 doi: 10.1109/LGRS.2011.2109934 – ident: ref3 doi: 10.1016/j.media.2015.07.003 – ident: ref28 doi: 10.1109/TII.2021.3096840 – ident: ref14 doi: 10.1109/TNNLS.2017.2716952 – ident: ref17 doi: 10.1016/j.ins.2016.12.007 – ident: ref5 doi: 10.1109/TCYB.2021.3061094 – ident: ref24 doi: 10.1109/TNNLS.2020.2967816 – ident: ref13 doi: 10.1109/TII.2019.2892873 – ident: ref16 doi: 10.1109/TCYB.2018.2857815 – ident: ref9 doi: 10.1109/TPAMI.2017.2688363 – start-page: 1813 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Efficient and robust feature selection via joint 2,1-norms minimization – ident: ref20 doi: 10.1016/j.ins.2017.07.003 |
| SSID | ssj0002512227 |
| Score | 2.2221227 |
| Snippet | Existing stochastic configuration network (SCN)-based modeling methods are underperformed in handling multitarget regression problems. An important reason is... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 338 |
| SubjectTerms | Adaptation models Alternating optimization algorithm Correlation Data models multitarget regression Predictive models stochastic configuration network (SCN) Stochastic processes structure matrix supervisory mechanism Task analysis Training |
| Title | Multitarget Stochastic Configuration Network and Applications |
| URI | https://ieeexplore.ieee.org/document/9745297 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MXp05xfowcvAjWJemapAcPQzb04BCcsFvJV3Ug3ZidR_92k7YrE0QQcighhfB7Ce-9vI8fwKXAacSkIoHSsQ0GxPBAOTkHlgqWap0Syk1BNsEnEzGbxU8NuK5rYay1RfKZvfGfRSzfLPTaP5X1ne0b0Zg3ock5K2u16vcUr6cp5ZtIJI770-GD8_8odW4p81xtPzTPFpVKoUnG7f_tYR_2KosRDUsRH0DDZofQ3rAxoOpyduC2rKUtMrvRc77Qb9L3YEa-pm_-ui4ljSZl2jeSmUHDreD1EbyMR9O7-6AiRwg04SIPnB0x0MTKULLIYqZSqbDESmI3lWKqhI-HYWkI1U7ncyOMDO2AqFBhxaS7yMfQyhaZPQHkq1NTy0gqnIsq3FDGhJHiUWS5U-m8C_0NcImuOod7Aov3pPAgcJw4qBMPdVJB3YWr-o9l2TXjj7Udj3K9rgL49PfpM9j1hO9l7sw5tPLV2l7Ajv7M5x-rHjQfv0a94mB8A53ytsU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKejFqVOcnzl4EaxL0rVJDx6GODacRXCCt5Kv6kA6mZ1_v0nblQkiCDmUkEL4vYT3Xt7HD-CC4zQIhSSeVJHxekQzT1o5e4byMFUqJZTpgmyCxTF_eYkeG3BV18IYY4rkM3PtPotYvp6phXsq61rbN6ARW4N1x5wVlNVa9YuK09SUsmUsEkfdSX9kPUBKrWMaOra2H7pnhUyl0CWD1v92sQPblc2I-qWQd6Fhsj1oLfkYUHU923BTVtMWud3oKZ-pN-G6MCNX1Td9XZSyRnGZ-I1EplF_JXy9D8-Du8nt0KvoETxFGM89a0n0FDHCF2FgcChTIbHAUmA7lWIquYuIYaEJVVbrM8218E2PSF9iGQp7lQ-gmc0ycwjI1aemJiQpt04qt0Nq7QeSBYFhVqmzDnSXwCWq6h3uKCzek8KHwFFioU4c1EkFdQcu6z8-yr4Zf6xtO5TrdRXAR79Pn8PmcPIwTsaj-P4Ythz9e5lJcwLNfL4wp7ChvvLp5_ysOB7fAGy43w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Stochastic+Configuration+Network+and+Applications&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Wang%2C+Qianjin&rft.au=Hong%2C+Qiqiang&rft.au=Wu%2C+Shang&rft.au=Dai%2C+Wei&rft.date=2023-04-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=4&rft.issue=2&rft.spage=338&rft.epage=348&rft_id=info:doi/10.1109%2FTAI.2022.3162570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2022_3162570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |