L Regularization: A Thresholding Representation Theory and a Fast Solver

The special importance of L_{1/2} regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L_{1/2} regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 23; číslo 7; s. 1013 - 1027
Hlavní autori: Xu, Zongben, Chang, Xiangyu, Xu, Fengmin, Zhang, Hai
Médium: Journal Article
Jazyk:English
Japanese
Vydavateľské údaje: IEEE 01.07.2012
Predmet:
ISSN:2162-237X, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The special importance of L_{1/2} regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L_{1/2} regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently. In this paper, through developing a threshoding representation theory for L_{1/2} regularization, we propose an iterative half thresholding algorithm for fast solution of L_{1/2} regularization, corresponding to the well-known iterative soft thresholding algorithm for L_{1} regularization, and the iterative hard thresholding algorithm for L_{0} regularization. We prove the existence of the resolvent of gradient of \Vert x\Vert^{1/2}_{1/2} , calculate its analytic expression, and establish an alternative feature theorem on solutions of L_{1/2} regularization, based on which a thresholding representation of solutions of L_{1/2} regularization is derived and an optimal regularization parameter setting rule is formulated. The developed theory provides a successful practice of extension of the well-known Moreau's proximity forward-backward splitting theory to the L_{1/2} regularization case. We verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance of the algorithm. The experiments show that the {half} algorithm is effective, efficient, and can be accepted as a fast solver for L_{1/2} regularization. With the new algorithm, we conduct a phase diagram study to further demonstrate the superiority of L_{1/2} regularization over L_{1} regularization.
AbstractList The special importance of L_{1/2} regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L_{1/2} regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently. In this paper, through developing a threshoding representation theory for L_{1/2} regularization, we propose an iterative half thresholding algorithm for fast solution of L_{1/2} regularization, corresponding to the well-known iterative soft thresholding algorithm for L_{1} regularization, and the iterative hard thresholding algorithm for L_{0} regularization. We prove the existence of the resolvent of gradient of \Vert x\Vert^{1/2}_{1/2} , calculate its analytic expression, and establish an alternative feature theorem on solutions of L_{1/2} regularization, based on which a thresholding representation of solutions of L_{1/2} regularization is derived and an optimal regularization parameter setting rule is formulated. The developed theory provides a successful practice of extension of the well-known Moreau's proximity forward-backward splitting theory to the L_{1/2} regularization case. We verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance of the algorithm. The experiments show that the {half} algorithm is effective, efficient, and can be accepted as a fast solver for L_{1/2} regularization. With the new algorithm, we conduct a phase diagram study to further demonstrate the superiority of L_{1/2} regularization over L_{1} regularization.
Author Xu, Fengmin
Xu, Zongben
Zhang, Hai
Chang, Xiangyu
Author_xml – sequence: 1
  givenname: Zongben
  surname: Xu
  fullname: Xu, Zongben
  email: zbxu@mail.xjtu.edu.cn
  organization: Institute for Information and System Science and the MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Xiangyu
  surname: Chang
  fullname: Chang, Xiangyu
  email: xiangyuchang@gmail.com
  organization: Institute for Information and System Science and Department of Applied Mathematics, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Fengmin
  surname: Xu
  fullname: Xu, Fengmin
  email: fengminxu@mail.xjtu.edu.cn
  organization: Institute for Information and System Science and Department of Applied Mathematics, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Hai
  surname: Zhang
  fullname: Zhang, Hai
  email: zhanghai@nwu.edu.cn
  organization: Department of Mathematics, Northwest University, Xi'an, China
BookMark eNp9kE1Lw0AQhhep2Fr7B_SyfyB1d7LZD2-lWCuECraCt7DZ7LaRmJTdKNRfb_pBDx6cy8zw8gzDc416dVNbhG4pGVNK1P1qsUiXYyAUxkCVYBQu0AAohwhiKXvnWbz30SiED9IVJwln6gr1gUkiKKgBmqf41a6_Ku3LH92WTf2AJ3i18TZsmqoo63UXb7vN1u0h7jLb-B3WdYE1nunQ4mVTfVt_gy6droIdnfoQvc0eV9N5lL48PU8naWSokCySwijCIFHAclZIoowEDZIxpwxNFC0ArBK5Ai2ciym3jrs8sWBilXMFSTxE8njX-CYEb11myuNrrddllVGS7f1kBz_Z3k928tOh8Afd-vJT-93_0N0RKq21Z4ADSWLF41-DinBx
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JSTARS_2017_2684132
crossref_primary_10_1016_j_cam_2023_115215
crossref_primary_10_1109_TCSVT_2016_2576919
crossref_primary_10_1007_s10898_022_01126_2
crossref_primary_10_1109_TGRS_2018_2866437
crossref_primary_10_1109_TPAMI_2017_2748590
crossref_primary_10_1137_19M1304799
crossref_primary_10_3390_math12233656
crossref_primary_10_1016_j_amc_2018_01_040
crossref_primary_10_1088_1361_6420_ad35e1
crossref_primary_10_1080_02331934_2023_2230994
crossref_primary_10_1109_ACCESS_2019_2898987
crossref_primary_10_1016_j_neucom_2025_130853
crossref_primary_10_1016_j_artmed_2018_09_005
crossref_primary_10_1016_j_neunet_2014_01_015
crossref_primary_10_1109_ACCESS_2018_2882531
crossref_primary_10_3390_a18040195
crossref_primary_10_4153_S0008439519000730
crossref_primary_10_1016_j_eswa_2022_119220
crossref_primary_10_1016_j_sigpro_2020_107805
crossref_primary_10_1186_s13660_018_1652_8
crossref_primary_10_1142_S0217595915500232
crossref_primary_10_1016_j_sigpro_2023_108994
crossref_primary_10_12677_AAM_2019_87142
crossref_primary_10_1007_s10957_020_01782_y
crossref_primary_10_1016_j_sigpro_2019_107369
crossref_primary_10_1109_TKDE_2019_2953668
crossref_primary_10_1016_j_sigpro_2021_108194
crossref_primary_10_1109_JSTARS_2025_3602505
crossref_primary_10_1109_ACCESS_2021_3137869
crossref_primary_10_1109_LGRS_2016_2596902
crossref_primary_10_1016_j_eswa_2023_122930
crossref_primary_10_1007_s00034_017_0532_7
crossref_primary_10_1109_TNNLS_2016_2532358
crossref_primary_10_1007_s11045_021_00797_6
crossref_primary_10_1016_j_neunet_2021_08_001
crossref_primary_10_1109_ACCESS_2016_2596379
crossref_primary_10_1016_j_measurement_2024_115658
crossref_primary_10_1109_TNNLS_2017_2677973
crossref_primary_10_1109_TCSVT_2019_2936135
crossref_primary_10_1109_TPAMI_2022_3157083
crossref_primary_10_1109_JSEN_2019_2940070
crossref_primary_10_1016_j_patcog_2022_109206
crossref_primary_10_1007_s13349_019_00343_w
crossref_primary_10_1049_iet_com_2016_1435
crossref_primary_10_1007_s10915_021_01443_w
crossref_primary_10_1016_j_neuroimage_2024_120967
crossref_primary_10_1109_ACCESS_2020_3031647
crossref_primary_10_1007_s00530_023_01198_4
crossref_primary_10_1007_s13042_017_0649_9
crossref_primary_10_1007_s00024_024_03651_5
crossref_primary_10_1007_s10878_019_00479_x
crossref_primary_10_1007_s10479_023_05524_x
crossref_primary_10_1109_JSTARS_2015_2423278
crossref_primary_10_1109_TETCI_2024_3403912
crossref_primary_10_1177_14759217231217907
crossref_primary_10_1016_j_knosys_2024_112151
crossref_primary_10_1109_JBHI_2023_3278538
crossref_primary_10_1109_TNNLS_2021_3131614
crossref_primary_10_1016_j_eswa_2023_120850
crossref_primary_10_1109_TGRS_2021_3074364
crossref_primary_10_1016_j_sigpro_2019_07_022
crossref_primary_10_1007_s10444_019_09668_y
crossref_primary_10_1038_s41524_024_01377_5
crossref_primary_10_1007_s12190_022_01799_8
crossref_primary_10_1007_s11590_014_0834_7
crossref_primary_10_1109_ACCESS_2020_2968716
crossref_primary_10_1016_j_imavis_2013_12_013
crossref_primary_10_1016_j_dsp_2018_08_021
crossref_primary_10_1007_s10915_019_01108_9
crossref_primary_10_1109_TGRS_2021_3101504
crossref_primary_10_4018_JGIM_292455
crossref_primary_10_3934_jimo_2025071
crossref_primary_10_1109_ACCESS_2020_3025379
crossref_primary_10_1109_TGRS_2016_2585201
crossref_primary_10_3390_rs17020321
crossref_primary_10_1007_s40747_025_01915_8
crossref_primary_10_1007_s10915_023_02268_5
crossref_primary_10_3390_rs13081473
crossref_primary_10_3390_rs16081459
crossref_primary_10_1007_s10898_019_00826_6
crossref_primary_10_1049_iet_spr_2015_0244
crossref_primary_10_1177_09544097221139606
crossref_primary_10_1007_s00034_023_02330_5
crossref_primary_10_1016_j_jvcir_2024_104285
crossref_primary_10_1016_j_neucom_2020_01_100
crossref_primary_10_1109_TCSVT_2023_3247944
crossref_primary_10_1109_JSTARS_2020_3017023
crossref_primary_10_1016_j_neucom_2013_11_032
crossref_primary_10_1007_s10915_024_02571_9
crossref_primary_10_1016_j_eswa_2021_114643
crossref_primary_10_1137_22M1525363
crossref_primary_10_3389_fams_2019_00014
crossref_primary_10_3390_math10132227
crossref_primary_10_1109_ACCESS_2020_3005669
crossref_primary_10_1007_s10915_016_0169_x
crossref_primary_10_1016_j_neunet_2019_10_006
crossref_primary_10_3390_app13042550
crossref_primary_10_3390_min13070972
crossref_primary_10_1016_j_trit_2016_10_007
crossref_primary_10_1080_01605682_2018_1447245
crossref_primary_10_1109_TNNLS_2014_2323985
crossref_primary_10_1007_s42967_023_00339_w
crossref_primary_10_1016_j_ins_2020_12_014
crossref_primary_10_1016_j_ymeth_2014_03_006
crossref_primary_10_1049_ell2_13243
crossref_primary_10_1007_s11075_024_01821_z
crossref_primary_10_1007_s10957_022_02016_z
crossref_primary_10_1007_s10589_022_00366_y
crossref_primary_10_1007_s11045_016_0437_9
crossref_primary_10_1007_s10957_025_02771_9
crossref_primary_10_1007_s00500_018_3460_y
crossref_primary_10_1016_j_cma_2017_01_039
crossref_primary_10_1007_s11075_023_01554_5
crossref_primary_10_1016_j_inffus_2021_11_005
crossref_primary_10_1080_0305215X_2024_2306131
crossref_primary_10_1007_s11075_017_0398_6
crossref_primary_10_1007_s11425_015_5038_9
crossref_primary_10_1177_14613484231198970
crossref_primary_10_1016_j_sigpro_2021_108283
crossref_primary_10_3390_s17122920
crossref_primary_10_1007_s11465_023_0762_2
crossref_primary_10_3390_s21041442
crossref_primary_10_1137_20M136801X
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1016_j_jappgeo_2017_01_031
crossref_primary_10_1109_TCYB_2021_3084931
crossref_primary_10_1007_s11432_013_4970_y
crossref_primary_10_1002_stc_2424
crossref_primary_10_1016_j_ins_2022_05_121
crossref_primary_10_1109_TSP_2018_2862402
crossref_primary_10_1109_JSTARS_2020_3017487
crossref_primary_10_1007_s11075_024_01793_0
crossref_primary_10_1016_j_sigpro_2019_01_001
crossref_primary_10_1080_00207160_2017_1284314
crossref_primary_10_1093_nsr_nwx069
crossref_primary_10_1007_s11590_013_0701_y
crossref_primary_10_1109_TIM_2022_3176244
crossref_primary_10_1109_TGRS_2020_2972982
crossref_primary_10_3390_math11122674
crossref_primary_10_1186_s13634_024_01114_6
crossref_primary_10_1016_j_cam_2018_08_021
crossref_primary_10_1109_TKDE_2019_2904687
crossref_primary_10_1109_TSP_2023_3315385
crossref_primary_10_1016_j_sigpro_2020_107655
crossref_primary_10_1109_TIM_2021_3084323
crossref_primary_10_1109_TNNLS_2021_3114400
crossref_primary_10_1080_02664763_2019_1566448
crossref_primary_10_1088_1757_899X_439_3_032083
crossref_primary_10_1007_s11425_017_9260_8
crossref_primary_10_1007_s40305_015_0103_1
crossref_primary_10_1016_j_ymssp_2023_110840
crossref_primary_10_1155_2014_857398
crossref_primary_10_1109_LSP_2017_2731791
crossref_primary_10_1016_j_sigpro_2017_09_003
crossref_primary_10_1186_1687_6180_2013_76
crossref_primary_10_1109_TIT_2015_2429611
crossref_primary_10_1007_s11063_017_9737_9
crossref_primary_10_1109_TNNLS_2018_2866622
crossref_primary_10_1109_ACCESS_2025_3570818
crossref_primary_10_1109_TCYB_2016_2627686
crossref_primary_10_1016_j_measurement_2023_113384
crossref_primary_10_1016_j_measurement_2025_117625
crossref_primary_10_1109_LGRS_2019_2904520
crossref_primary_10_1016_j_ijmecsci_2025_110336
crossref_primary_10_1016_j_neucom_2016_10_057
crossref_primary_10_1016_j_neucom_2018_06_050
crossref_primary_10_1049_iet_spr_2018_5130
crossref_primary_10_1109_TSP_2023_3296197
crossref_primary_10_1016_j_sigpro_2020_107889
crossref_primary_10_1109_TCSVT_2024_3524668
crossref_primary_10_1007_s10851_018_0830_0
crossref_primary_10_1016_j_amc_2021_125977
crossref_primary_10_1016_j_ijleo_2022_169630
crossref_primary_10_1109_TIT_2014_2312723
crossref_primary_10_1016_j_ins_2019_06_024
crossref_primary_10_1109_ACCESS_2015_2430359
crossref_primary_10_1109_JSTSP_2013_2241014
crossref_primary_10_1109_TSP_2020_3022822
crossref_primary_10_1155_2018_4949673
crossref_primary_10_1109_ACCESS_2019_2923171
crossref_primary_10_1109_ACCESS_2025_3529465
crossref_primary_10_3389_fninf_2020_00029
crossref_primary_10_1016_j_jfranklin_2023_01_041
crossref_primary_10_1016_j_ins_2017_06_020
crossref_primary_10_1371_journal_pcbi_1011459
crossref_primary_10_1007_s10107_019_01397_w
crossref_primary_10_3390_s20185384
crossref_primary_10_1016_j_engappai_2022_105376
crossref_primary_10_1109_ACCESS_2019_2891121
crossref_primary_10_1109_TSE_2025_3581556
crossref_primary_10_1007_s11425_017_9315_9
crossref_primary_10_1016_j_bspc_2023_104801
crossref_primary_10_1007_s10915_024_02682_3
crossref_primary_10_1016_j_measurement_2021_110677
crossref_primary_10_1016_j_neucom_2018_06_046
crossref_primary_10_1007_s11075_023_01569_y
crossref_primary_10_1155_2022_1758996
crossref_primary_10_1109_ACCESS_2018_2799984
crossref_primary_10_1016_j_neucom_2016_03_063
crossref_primary_10_1016_j_jmaa_2015_06_006
crossref_primary_10_1109_TIM_2020_3043940
crossref_primary_10_1088_1361_6420_ad617d
crossref_primary_10_1016_j_ijepes_2013_09_002
crossref_primary_10_1007_s40745_015_0063_7
crossref_primary_10_1016_j_cam_2019_06_004
crossref_primary_10_1371_journal_pone_0210786
crossref_primary_10_1007_s11222_024_10438_0
crossref_primary_10_1080_02331934_2025_2548878
crossref_primary_10_1038_s41598_019_54495_2
crossref_primary_10_3390_a16090446
crossref_primary_10_1016_j_neunet_2014_10_008
crossref_primary_10_1109_TCI_2017_2744626
crossref_primary_10_1016_j_spl_2015_04_017
crossref_primary_10_1007_s12190_025_02553_6
crossref_primary_10_1109_TMI_2017_2767290
crossref_primary_10_1109_TIP_2020_2972109
crossref_primary_10_1016_j_neucom_2020_01_058
crossref_primary_10_1016_j_patcog_2016_11_003
crossref_primary_10_3934_jimo_2025116
crossref_primary_10_3390_app8091569
crossref_primary_10_1016_j_cam_2023_115251
crossref_primary_10_1007_s10107_024_02161_5
crossref_primary_10_1109_TGRS_2022_3223280
crossref_primary_10_1016_j_cam_2024_115897
crossref_primary_10_1049_iet_spr_2018_5037
crossref_primary_10_1007_s10915_024_02497_2
crossref_primary_10_1016_j_neucom_2019_08_035
crossref_primary_10_1016_j_patcog_2020_107685
crossref_primary_10_1631_FITEE_1601489
crossref_primary_10_1016_j_jmr_2021_107080
crossref_primary_10_1007_s10915_021_01440_z
crossref_primary_10_1007_s11590_016_1013_9
crossref_primary_10_1016_j_jsv_2021_116165
crossref_primary_10_1016_j_swevo_2022_101153
crossref_primary_10_3390_sym17060887
crossref_primary_10_1016_j_csda_2019_01_002
crossref_primary_10_1016_j_ins_2019_08_001
crossref_primary_10_1109_TBME_2017_2771483
crossref_primary_10_1109_TNNLS_2012_2208476
crossref_primary_10_1016_j_advengsoft_2018_12_004
crossref_primary_10_1007_s40305_014_0069_4
crossref_primary_10_1007_s11432_017_9367_6
crossref_primary_10_1145_3476514
crossref_primary_10_1016_j_knosys_2024_112923
crossref_primary_10_1007_s41980_025_00985_1
crossref_primary_10_1137_23M1546701
crossref_primary_10_1016_j_compbiomed_2018_07_009
crossref_primary_10_1088_1742_5468_2016_12_123302
crossref_primary_10_1109_ACCESS_2019_2915597
crossref_primary_10_1016_j_dsp_2016_12_014
crossref_primary_10_1109_LGRS_2021_3063252
crossref_primary_10_1007_s12652_021_02947_x
crossref_primary_10_1016_j_neucom_2020_02_091
crossref_primary_10_1007_s00521_021_06848_0
crossref_primary_10_1016_j_eswa_2019_112912
crossref_primary_10_1016_j_ijleo_2014_08_098
crossref_primary_10_1137_20M1337041
crossref_primary_10_1007_s00034_019_01077_2
crossref_primary_10_1007_s00186_019_00660_2
crossref_primary_10_3390_mi12101205
crossref_primary_10_1109_ACCESS_2020_2975531
crossref_primary_10_1007_s00180_020_01037_4
crossref_primary_10_1007_s10898_019_00819_5
crossref_primary_10_1016_j_compbiomed_2014_09_002
crossref_primary_10_1016_j_neucom_2025_130084
crossref_primary_10_1109_TVT_2017_2749254
crossref_primary_10_1190_geo2020_0784_1
crossref_primary_10_1016_j_apnum_2022_10_011
crossref_primary_10_1109_TCYB_2016_2546965
crossref_primary_10_1109_TGRS_2019_2946751
crossref_primary_10_1016_j_acha_2020_04_002
crossref_primary_10_1016_j_procs_2017_03_085
crossref_primary_10_1109_ACCESS_2017_2705646
crossref_primary_10_3934_ipi_2024048
crossref_primary_10_1016_j_image_2021_116214
crossref_primary_10_1109_TGRS_2019_2956562
crossref_primary_10_1007_s11425_016_9107_y
crossref_primary_10_1016_j_engappai_2017_11_008
crossref_primary_10_1109_TNNLS_2013_2247417
crossref_primary_10_3390_jmse11020269
crossref_primary_10_1109_TCYB_2018_2825253
crossref_primary_10_1007_s40846_020_00559_y
crossref_primary_10_1016_j_dsp_2023_103937
crossref_primary_10_1016_j_ins_2018_06_019
crossref_primary_10_1109_TCYB_2018_2883566
crossref_primary_10_1016_j_knosys_2022_110123
crossref_primary_10_1109_LSP_2019_2900126
crossref_primary_10_1016_j_amc_2020_125408
crossref_primary_10_1109_ACCESS_2017_2713389
crossref_primary_10_1007_s10957_016_0869_2
crossref_primary_10_1016_j_measurement_2023_114057
crossref_primary_10_1186_1471_2105_14_198
crossref_primary_10_1016_j_engappai_2022_105447
crossref_primary_10_1016_j_neucom_2016_03_019
crossref_primary_10_1109_TIM_2020_2976080
crossref_primary_10_1109_TMM_2014_2375792
crossref_primary_10_1007_s10255_023_1048_5
crossref_primary_10_1007_s10846_015_0213_3
crossref_primary_10_1016_j_isatra_2019_06_007
crossref_primary_10_1016_j_dsp_2025_105248
crossref_primary_10_1016_j_dsp_2025_105246
crossref_primary_10_1109_TIM_2020_3039648
crossref_primary_10_1016_j_engappai_2020_103906
crossref_primary_10_1109_TCBB_2022_3172289
crossref_primary_10_1007_s11063_022_10956_w
crossref_primary_10_1007_s11075_025_02078_w
crossref_primary_10_1016_j_csda_2018_08_025
crossref_primary_10_1007_s10915_020_01190_4
crossref_primary_10_1016_j_neucom_2014_09_023
crossref_primary_10_1016_j_neunet_2022_07_018
crossref_primary_10_1063_1_4876675
crossref_primary_10_1109_JSEN_2025_3569224
crossref_primary_10_1137_18M123147X
crossref_primary_10_1051_wujns_2023281053
crossref_primary_10_1007_s10589_019_00084_y
crossref_primary_10_1007_s10473_023_0101_z
crossref_primary_10_1016_j_cam_2024_116145
crossref_primary_10_1016_j_jvcir_2023_103785
crossref_primary_10_1007_s13042_021_01319_3
crossref_primary_10_1109_TEVC_2013_2287153
crossref_primary_10_1016_j_knosys_2015_12_011
crossref_primary_10_1007_s10915_023_02250_1
crossref_primary_10_1109_ACCESS_2019_2908189
crossref_primary_10_1109_TCBB_2019_2897301
crossref_primary_10_1109_ACCESS_2019_2911004
crossref_primary_10_1109_ACCESS_2021_3054807
crossref_primary_10_1109_ACCESS_2018_2830771
crossref_primary_10_1016_j_compbiomed_2023_106752
crossref_primary_10_1016_j_cam_2017_09_029
crossref_primary_10_1155_2014_862910
crossref_primary_10_1016_j_neucom_2019_09_020
crossref_primary_10_1007_s11401_022_0377_7
crossref_primary_10_3233_THC_199009
crossref_primary_10_1016_j_ins_2021_11_074
crossref_primary_10_1016_j_jfranklin_2018_06_015
crossref_primary_10_1080_02331934_2021_2011869
crossref_primary_10_1007_s13042_021_01406_5
crossref_primary_10_1051_wujns_2023281061
crossref_primary_10_1016_j_jfoodeng_2023_111662
crossref_primary_10_1109_LSP_2024_3426353
crossref_primary_10_1016_j_apacoust_2025_110874
crossref_primary_10_1016_j_neucom_2025_130291
crossref_primary_10_1080_02331934_2017_1359590
crossref_primary_10_1007_s10489_013_0482_0
crossref_primary_10_1109_ACCESS_2016_2596704
crossref_primary_10_1109_TSP_2016_2598316
crossref_primary_10_1109_TNNLS_2016_2641475
crossref_primary_10_12677_AAM_2020_93036
crossref_primary_10_1137_16M1098929
crossref_primary_10_1109_TPWRS_2015_2433891
crossref_primary_10_1016_j_sigpro_2019_04_011
crossref_primary_10_1109_TIM_2021_3133312
crossref_primary_10_1016_j_ymssp_2023_110459
crossref_primary_10_3390_ijms19010030
crossref_primary_10_1007_s11431_023_2514_6
crossref_primary_10_1016_j_ins_2024_121344
crossref_primary_10_1109_ACCESS_2020_2978287
crossref_primary_10_1007_s10898_024_01441_w
crossref_primary_10_1016_j_sigpro_2014_03_040
crossref_primary_10_1109_TCYB_2020_3027642
crossref_primary_10_1016_j_neucom_2019_09_025
crossref_primary_10_1177_14759217231165701
crossref_primary_10_3390_rs16193634
crossref_primary_10_1186_s40064_016_3516_3
crossref_primary_10_1109_TSP_2016_2595499
crossref_primary_10_1137_21M1438566
crossref_primary_10_1109_TPAMI_2017_2783936
crossref_primary_10_1016_j_knosys_2023_111327
crossref_primary_10_1177_09622802251316974
crossref_primary_10_1109_TFUZZ_2017_2760287
crossref_primary_10_1016_j_apacoust_2024_110340
crossref_primary_10_1016_j_neunet_2013_11_006
crossref_primary_10_3390_rs14020383
crossref_primary_10_1016_j_jvcir_2015_10_007
crossref_primary_10_1016_j_neucom_2020_12_003
crossref_primary_10_1016_j_flowmeasinst_2017_12_010
crossref_primary_10_3390_a15020068
crossref_primary_10_1371_journal_pone_0149675
crossref_primary_10_1016_j_neucom_2016_03_100
crossref_primary_10_1109_ACCESS_2023_3335841
crossref_primary_10_1007_s11425_015_5052_y
crossref_primary_10_1007_s12559_019_09650_2
crossref_primary_10_1007_s43674_022_00038_8
crossref_primary_10_1155_2013_475702
crossref_primary_10_1109_ACCESS_2018_2890740
crossref_primary_10_1007_s11590_022_01919_0
crossref_primary_10_1016_j_neucom_2020_05_066
crossref_primary_10_1007_s00034_018_0892_7
crossref_primary_10_1007_s10898_019_00830_w
crossref_primary_10_1016_j_eswa_2024_123867
crossref_primary_10_1088_1361_6420_aab246
crossref_primary_10_1109_TGRS_2020_3040277
crossref_primary_10_1109_TNNLS_2015_2512563
crossref_primary_10_1186_s10033_024_01044_2
crossref_primary_10_1080_00207160_2016_1227432
crossref_primary_10_1109_TIM_2023_3292949
crossref_primary_10_1007_s13042_023_01935_1
crossref_primary_10_1016_j_compbiomed_2023_106664
crossref_primary_10_1186_s13660_019_2145_0
crossref_primary_10_1016_j_neucom_2024_127521
crossref_primary_10_1109_TGRS_2019_2897328
crossref_primary_10_1109_TSIPN_2023_3306098
crossref_primary_10_1007_s10107_018_1236_x
crossref_primary_10_1016_j_apacoust_2022_108636
crossref_primary_10_1007_s00500_023_09017_8
crossref_primary_10_1007_s10915_023_02393_1
crossref_primary_10_1007_s10915_021_01677_8
crossref_primary_10_1049_ipr2_12411
crossref_primary_10_1109_TIP_2019_2957925
crossref_primary_10_3390_sym14010154
crossref_primary_10_1016_j_dsp_2022_103833
crossref_primary_10_1007_s10957_025_02778_2
crossref_primary_10_1016_j_cmpb_2023_107503
crossref_primary_10_1155_2014_206926
crossref_primary_10_1016_j_cam_2018_11_031
crossref_primary_10_1109_ACCESS_2018_2818682
crossref_primary_10_1109_JMMCT_2019_2953880
crossref_primary_10_1007_s00034_020_01503_w
crossref_primary_10_1007_s12190_025_02527_8
crossref_primary_10_1007_s11760_015_0829_6
crossref_primary_10_1016_j_phycom_2014_08_001
crossref_primary_10_3390_rs17091483
crossref_primary_10_1016_j_knosys_2018_11_009
crossref_primary_10_1007_s40305_025_00627_7
crossref_primary_10_1016_j_cam_2020_112934
crossref_primary_10_1016_j_cmpb_2018_06_004
crossref_primary_10_1109_TMAG_2023_3257409
crossref_primary_10_1109_ACCESS_2019_2925563
crossref_primary_10_1109_JSTARS_2020_3046366
crossref_primary_10_3390_s18103373
crossref_primary_10_1016_j_neuroimage_2014_01_021
crossref_primary_10_1109_TSP_2014_2309076
crossref_primary_10_1007_s00024_021_02936_3
crossref_primary_10_1190_geo2015_0151_1
crossref_primary_10_1016_j_sigpro_2014_01_002
crossref_primary_10_32362_2500_316X_2024_12_4_51_58
crossref_primary_10_1007_s11042_019_08211_x
crossref_primary_10_1016_j_neucom_2014_10_069
crossref_primary_10_1016_j_asoc_2023_110122
crossref_primary_10_1137_20M1341490
crossref_primary_10_1515_jiip_2020_0003
crossref_primary_10_1016_j_cam_2017_01_010
crossref_primary_10_1016_j_ins_2018_10_049
crossref_primary_10_1109_LSP_2017_2768582
crossref_primary_10_1016_j_sigpro_2022_108926
crossref_primary_10_1088_1742_2132_11_6_065001
crossref_primary_10_1109_ACCESS_2020_3034796
crossref_primary_10_1088_1361_6668_abc569
crossref_primary_10_1109_TIT_2017_2773497
crossref_primary_10_1016_j_compbiolchem_2019_107120
crossref_primary_10_1109_ACCESS_2022_3170453
crossref_primary_10_1007_s11760_020_01752_x
crossref_primary_10_1109_TNNLS_2021_3105276
crossref_primary_10_1016_j_neucom_2015_08_002
crossref_primary_10_1016_j_jpdc_2017_08_013
crossref_primary_10_1109_TSP_2015_2412915
crossref_primary_10_1049_iet_rsn_2014_0407
crossref_primary_10_1016_j_patcog_2017_01_012
crossref_primary_10_1080_23249935_2025_2528952
crossref_primary_10_1007_s10898_022_01176_6
crossref_primary_10_1137_22M1482822
crossref_primary_10_1002_int_22844
crossref_primary_10_1016_j_neunet_2017_12_008
crossref_primary_10_3390_electronics12224574
crossref_primary_10_1016_j_neunet_2018_03_007
crossref_primary_10_1016_j_inffus_2025_103531
crossref_primary_10_1016_j_neucom_2019_02_035
crossref_primary_10_1002_cpe_6343
crossref_primary_10_1109_TNNLS_2025_3562223
crossref_primary_10_1007_s11042_016_3848_6
crossref_primary_10_1016_j_asoc_2013_09_006
crossref_primary_10_1109_JPHOT_2025_3596236
crossref_primary_10_1016_j_dsp_2025_105404
crossref_primary_10_3233_THC_209016
crossref_primary_10_1016_j_sigpro_2022_108918
crossref_primary_10_3390_app7101013
crossref_primary_10_3390_electronics14132508
crossref_primary_10_1016_j_patrec_2016_05_012
crossref_primary_10_1109_TNNLS_2017_2716952
crossref_primary_10_3390_electronics9020321
crossref_primary_10_1142_S0217595915400084
crossref_primary_10_1051_matecconf_201823204019
crossref_primary_10_1162_neco_a_01508
crossref_primary_10_1007_s10915_015_0094_4
crossref_primary_10_1109_ACCESS_2021_3105366
crossref_primary_10_12677_AAM_2019_82034
crossref_primary_10_1007_s12532_019_00168_0
crossref_primary_10_1109_MSP_2013_2296790
crossref_primary_10_1007_s11432_012_4679_3
crossref_primary_10_1007_s40745_022_00389_6
crossref_primary_10_1016_j_asoc_2017_07_006
crossref_primary_10_1016_j_ygeno_2022_110426
crossref_primary_10_1016_j_eswa_2017_10_008
crossref_primary_10_1109_TSIPN_2017_2662619
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1109_TKDE_2019_2922637
crossref_primary_10_1016_j_amc_2021_126168
crossref_primary_10_1016_j_ymssp_2022_108921
crossref_primary_10_1007_s12190_021_01590_1
crossref_primary_10_1002_gepi_21849
crossref_primary_10_1007_s11704_019_8395_7
crossref_primary_10_3390_rs12121963
crossref_primary_10_1007_s10462_021_10073_5
crossref_primary_10_1016_j_neucom_2019_11_123
crossref_primary_10_1109_TNNLS_2019_2899045
crossref_primary_10_3390_math11030682
crossref_primary_10_1109_ACCESS_2018_2880198
crossref_primary_10_1016_j_jsv_2020_115311
crossref_primary_10_1364_AO_553592
crossref_primary_10_1049_iet_cvi_2014_0114
crossref_primary_10_1109_TGRS_2022_3218581
crossref_primary_10_1287_ijoc_2020_1004
crossref_primary_10_1007_s10915_022_01897_6
crossref_primary_10_1016_j_neucom_2013_03_017
crossref_primary_10_1016_j_knosys_2021_107019
crossref_primary_10_1109_ACCESS_2021_3124600
crossref_primary_10_1007_s11425_018_9467_7
crossref_primary_10_1016_j_neunet_2021_02_006
crossref_primary_10_1109_TSP_2020_2985298
crossref_primary_10_1007_s10898_022_01220_5
crossref_primary_10_1016_j_sigpro_2022_108853
crossref_primary_10_1088_1402_4896_adaa2b
crossref_primary_10_1155_2014_942520
crossref_primary_10_1049_el_2015_1103
crossref_primary_10_1038_s41598_020_79028_0
crossref_primary_10_1109_ACCESS_2020_2980757
crossref_primary_10_1007_s00521_016_2735_4
crossref_primary_10_1016_j_neunet_2020_01_022
crossref_primary_10_1051_e3sconf_202126901020
crossref_primary_10_1016_j_dsp_2023_104025
crossref_primary_10_1109_TNNLS_2017_2785324
crossref_primary_10_1155_2021_6641180
crossref_primary_10_1007_s10589_017_9898_5
crossref_primary_10_1007_s11760_021_01960_z
crossref_primary_10_1007_s12652_022_04349_z
crossref_primary_10_1038_s41598_017_13133_5
crossref_primary_10_1137_14098435X
crossref_primary_10_3390_electronics8080867
crossref_primary_10_1007_s11760_018_1367_9
crossref_primary_10_1145_3407188
crossref_primary_10_1016_j_jhazmat_2024_134724
crossref_primary_10_1007_s10107_024_02068_1
crossref_primary_10_1016_j_neucom_2015_07_009
crossref_primary_10_1016_j_ins_2024_120860
crossref_primary_10_1109_ACCESS_2018_2886876
crossref_primary_10_3390_jimaging7120279
crossref_primary_10_1016_j_apacoust_2020_107456
crossref_primary_10_1109_TNNLS_2012_2235082
crossref_primary_10_1109_TBME_2018_2881092
crossref_primary_10_1016_j_sigpro_2019_107292
crossref_primary_10_3390_math12071065
crossref_primary_10_1109_ACCESS_2019_2921698
crossref_primary_10_1016_j_apm_2023_08_002
crossref_primary_10_1109_TIP_2015_2468175
crossref_primary_10_1109_TNNLS_2019_2921404
crossref_primary_10_3390_e25070999
crossref_primary_10_1007_s13042_023_01929_z
crossref_primary_10_1016_j_apacoust_2023_109461
crossref_primary_10_1016_j_eswa_2020_114402
crossref_primary_10_1016_j_sigpro_2017_10_023
crossref_primary_10_1002_stc_3036
crossref_primary_10_1007_s11424_024_3297_7
crossref_primary_10_1109_ACCESS_2020_3029968
crossref_primary_10_1016_j_jfranklin_2020_03_032
crossref_primary_10_1109_TCI_2022_3208511
crossref_primary_10_1016_j_sigpro_2021_108250
crossref_primary_10_1109_JSTARS_2013_2263309
crossref_primary_10_1016_j_bspc_2021_102899
crossref_primary_10_1016_j_engappai_2024_108444
crossref_primary_10_1016_j_neunet_2019_08_015
crossref_primary_10_1109_TBME_2018_2874699
crossref_primary_10_1109_TIE_2018_2793271
crossref_primary_10_3390_rs14020288
crossref_primary_10_1007_s40305_023_00535_8
crossref_primary_10_1109_TNNLS_2012_2226471
crossref_primary_10_1016_j_patcog_2025_112354
crossref_primary_10_1109_TNNLS_2017_2658953
crossref_primary_10_1016_j_engappai_2020_103694
crossref_primary_10_1016_j_neucom_2015_12_009
crossref_primary_10_3389_fcomp_2023_1131317
crossref_primary_10_1109_ACCESS_2019_2901519
crossref_primary_10_3233_XST_180470
crossref_primary_10_1186_s13634_023_01027_w
crossref_primary_10_12677_AIRR_2023_123018
crossref_primary_10_1016_j_isci_2023_106517
crossref_primary_10_1109_TNNLS_2020_2975302
crossref_primary_10_1007_s00180_024_01485_2
crossref_primary_10_1109_ACCESS_2019_2913744
crossref_primary_10_1109_TNNLS_2022_3153310
crossref_primary_10_3390_jmse10091196
crossref_primary_10_1109_JSTARS_2015_2401603
crossref_primary_10_1109_TSP_2019_2940121
crossref_primary_10_1007_s11063_022_11069_0
crossref_primary_10_1002_tee_23049
crossref_primary_10_1137_19M1243828
crossref_primary_10_1016_j_knosys_2022_109858
crossref_primary_10_1109_TIT_2015_2501362
crossref_primary_10_4018_IJGHPC_2018070102
crossref_primary_10_1007_s11432_021_3319_4
crossref_primary_10_1007_s10898_022_01257_6
crossref_primary_10_1080_02331934_2019_1576663
crossref_primary_10_1016_j_neucom_2024_129322
crossref_primary_10_1080_00207160_2020_1812585
crossref_primary_10_3390_rs11172058
crossref_primary_10_1162_NECO_a_00641
crossref_primary_10_1007_s10589_024_00643_y
crossref_primary_10_1007_s10898_020_00955_3
crossref_primary_10_1142_S0217595917500300
crossref_primary_10_1109_TNNLS_2017_2785403
crossref_primary_10_1007_s13042_020_01121_7
crossref_primary_10_1186_s13660_024_03141_1
crossref_primary_10_1002_advs_201900128
crossref_primary_10_1007_s10589_014_9683_7
crossref_primary_10_1016_j_neucom_2018_10_065
crossref_primary_10_1049_iet_ipr_2018_5173
crossref_primary_10_1109_TMI_2021_3051416
crossref_primary_10_1016_j_sigpro_2014_09_028
crossref_primary_10_1177_0954407020964625
crossref_primary_10_1016_j_knosys_2025_113869
crossref_primary_10_1016_j_neucom_2020_12_045
crossref_primary_10_1109_TSP_2018_2849734
crossref_primary_10_1137_16M1080240
crossref_primary_10_1109_TASE_2022_3141248
crossref_primary_10_1007_s10589_025_00708_6
crossref_primary_10_1109_JBHI_2023_3326485
crossref_primary_10_1109_TNNLS_2013_2245914
crossref_primary_10_1137_140952363
crossref_primary_10_1109_ACCESS_2014_2326165
crossref_primary_10_1007_s40305_024_00579_4
crossref_primary_10_1016_j_neucom_2016_01_090
crossref_primary_10_1109_TCYB_2019_2921827
crossref_primary_10_1007_s10915_017_0463_2
crossref_primary_10_1016_j_ejor_2024_07_017
crossref_primary_10_1016_j_knosys_2024_112224
crossref_primary_10_1016_j_ymssp_2024_111351
crossref_primary_10_1016_j_neucom_2021_06_008
crossref_primary_10_1109_TNNLS_2021_3059711
crossref_primary_10_1109_TMI_2014_2330426
crossref_primary_10_1155_2014_104709
crossref_primary_10_1007_s10878_020_00563_7
crossref_primary_10_1016_j_aci_2018_07_002
crossref_primary_10_1007_s11042_017_5026_x
crossref_primary_10_1016_j_sigpro_2022_108754
crossref_primary_10_1109_ACCESS_2019_2911696
crossref_primary_10_1007_s11277_019_06781_5
crossref_primary_10_1007_s10898_021_01028_9
crossref_primary_10_1109_LSP_2017_2736159
crossref_primary_10_1007_s10878_019_00453_7
crossref_primary_10_2514_1_J059341
Cites_doi 10.1214/07-AOS582
10.1109/78.558475
10.1198/016214506000000735
10.1088/0266-5611/24/3/035020
10.1887/0750304359
10.1137/S0097539792240406
10.1109/TIT.2007.909108
10.1016/j.acha.2009.04.002
10.1007/s10208-009-9045-5
10.1109/TNN.2011.2157521
10.1137/060663556
10.1007/s00454-005-1220-0
10.1137/S1064827596304010
10.1109/JSTSP.2010.2042412
10.1109/ISBI.2009.5193034
10.1109/ICASSP.2006.1660731
10.1007/s00041-008-9035-z
10.1109/TIT.2004.834793
10.1214/aos/1013203451
10.1002/cpa.20124
10.1214/009053604000000067
10.1038/381607a0
10.1006/acha.2000.0343
10.1109/LSP.2007.898300
10.1214/aos/1176344136
10.1109/TIT.2005.860474
10.1109/TIT.2008.924688
10.1137/050626090
10.1214/07-AOAS131
10.1109/TIT.2006.871582
10.1109/18.382009
10.1137/090761471
10.1109/TIT.2005.862083
10.1109/TNN.2011.2164810
10.1109/78.258082
10.1002/cpa.20042
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNNLS.2012.2197412
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1027
ExternalDocumentID 10_1109_TNNLS_2012_2197412
6205396
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c1784-87c90425924b4d809c82a2844f9c1591d22e97b92a7ff316ef6fb5e2c39b69253
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Sat Nov 29 08:00:05 EST 2025
Tue Nov 18 21:58:06 EST 2025
Wed Aug 27 02:03:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1784-87c90425924b4d809c82a2844f9c1591d22e97b92a7ff316ef6fb5e2c39b69253
PMID 24807129
PageCount 15
ParticipantIDs ieee_primary_6205396
crossref_citationtrail_10_1109_TNNLS_2012_2197412
crossref_primary_10_1109_TNNLS_2012_2197412
PublicationCentury 2000
PublicationDate 2012-July
2012-7-00
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref15
xu (ref44) 0
ref36
ref14
ref31
ref30
ref33
ref11
ref32
xu (ref20) 2011
ref2
ref39
ref17
ref38
ref18
moreau (ref41) 1962; 255
akaike (ref42) 1973
xu (ref7) 2010; 53
ref46
ref24
ref45
ref23
ref26
ref25
ref22
ref21
ref43
stodden (ref47) 2006
ref28
ref27
xu (ref19) 2010; 4
efron (ref34) 2004; 32
ref29
ref8
ref9
ref4
ref3
donoho (ref10) 2005
ref6
krishnan (ref16) 2009
ref5
ref40
xing (ref37) 2003; 12
tibshirani (ref1) 1996; 58
References_xml – ident: ref14
  doi: 10.1214/07-AOS582
– ident: ref46
  doi: 10.1109/78.558475
– ident: ref13
  doi: 10.1198/016214506000000735
– ident: ref15
  doi: 10.1088/0266-5611/24/3/035020
– ident: ref36
  doi: 10.1887/0750304359
– ident: ref9
  doi: 10.1137/S0097539792240406
– ident: ref29
  doi: 10.1109/TIT.2007.909108
– ident: ref22
  doi: 10.1016/j.acha.2009.04.002
– ident: ref4
  doi: 10.1007/s10208-009-9045-5
– ident: ref21
  doi: 10.1109/TNN.2011.2157521
– ident: ref24
  doi: 10.1137/060663556
– ident: ref11
  doi: 10.1007/s00454-005-1220-0
– ident: ref12
  doi: 10.1137/S1064827596304010
– ident: ref30
  doi: 10.1109/JSTSP.2010.2042412
– ident: ref18
  doi: 10.1109/ISBI.2009.5193034
– ident: ref25
  doi: 10.1109/ICASSP.2006.1660731
– ident: ref23
  doi: 10.1007/s00041-008-9035-z
– ident: ref32
  doi: 10.1109/TIT.2004.834793
– ident: ref35
  doi: 10.1214/aos/1013203451
– ident: ref5
  doi: 10.1002/cpa.20124
– volume: 32
  start-page: 407
  year: 2004
  ident: ref34
  article-title: Least angle regression
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– ident: ref2
  doi: 10.1038/381607a0
– volume: 4
  start-page: 3151
  year: 2010
  ident: ref19
  article-title: Data modeling: Visual psychology approach and <formula formulatype="inline"><tex Notation="TeX">$L_{1/2}$</tex> </formula> regularization theory
  publication-title: Proc Int Congr Math
– ident: ref27
  doi: 10.1006/acha.2000.0343
– volume: 12
  start-page: 207
  year: 2003
  ident: ref37
  article-title: Investigation on solutions of cubic equations with one unknown
  publication-title: J Central Univ Nat (Natural Sci Ed )
– ident: ref17
  doi: 10.1109/LSP.2007.898300
– volume: 58
  start-page: 267
  year: 1996
  ident: ref1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc Ser B
– ident: ref43
  doi: 10.1214/aos/1176344136
– ident: ref31
  doi: 10.1109/TIT.2005.860474
– ident: ref3
  doi: 10.1109/TIT.2008.924688
– year: 2009
  ident: ref16
  article-title: Fast image deconvolution using hyper-Laplacian priors
  publication-title: Neural Information Processing Systems
– start-page: 267
  year: 1973
  ident: ref42
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Proc Int Symp Inf Theory
– ident: ref40
  doi: 10.1137/050626090
– ident: ref33
  doi: 10.1214/07-AOAS131
– ident: ref6
  doi: 10.1109/TIT.2006.871582
– ident: ref26
  doi: 10.1109/18.382009
– ident: ref38
  doi: 10.1137/090761471
– ident: ref45
  doi: 10.1109/TIT.2005.862083
– year: 2005
  ident: ref10
  publication-title: Neighborly polytopes and the sparse solution of underdetermined systems of linear equations
– ident: ref8
  doi: 10.1109/TNN.2011.2164810
– ident: ref28
  doi: 10.1109/78.258082
– year: 2006
  ident: ref47
  publication-title: Model selection when the number of variables exceeds the number of observations
– year: 2011
  ident: ref20
  article-title: The representation of <formula formulatype="inline"><tex Notation="TeX">$L_{1/2}$</tex></formula> regularizer among <formula formulatype="inline"> <tex Notation="TeX">$L_{q}~(0<q<1)$</tex></formula> regularizer: An experimental study based on phase diagram
  publication-title: Acta Autom Sinica
– volume: 53
  start-page: 1159
  year: 2010
  ident: ref7
  article-title: <formula formulatype="inline"><tex Notation="TeX">$L_{1/2}$</tex></formula> regularization
  publication-title: Sci China
– volume: 255
  start-page: 2897
  year: 1962
  ident: ref41
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C R Acad Sci Paris Sr I Math
– year: 0
  ident: ref44
  publication-title: Convergence of iterative half thresholding algorithm for regularization
– ident: ref39
  doi: 10.1002/cpa.20042
SSID ssj0000605649
Score 2.020894
Snippet The special importance of L_{1/2} regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L_{1/2}...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1013
SubjectTerms Compressed sensing
Compressive sensing
Convergence
Convex functions
half
hard
Iterative algorithms
L_{q} regularization
Learning systems
Noise
Optimization
Signal processing algorithms
soft
sparsity
thresholding algorithms
thresholding representation theory
Title L Regularization: A Thresholding Representation Theory and a Fast Solver
URI https://ieeexplore.ieee.org/document/6205396
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cGLU6c4f5GDN-3WpG3SeBvi2GEUcRN2K2mSgiDd2A__fpM06zyI4K20CZS8vHzfS96XB3AvU5yUiWKBFjoOYiZxUChGAkmY0DI2mFA4ofCEZVk6n_PXFjw2WhittUs-03376M7y1UJu7VbZgBIzZTg9gAPGaK3VavZTQsPLqWO7BFMSkIjNdxqZkA9mWTaZ2kQu0jcualDUVrEhVk6NHbncQ9KPGisOYkad__3cCRx7KomGte1PoaWrM-jsyjQg77VdGE_Qm6s4v_Kayyc0RDNjw7U_ejKfl3sVUoVqvT4SlUICjcR6g6YLm0B9Du-jl9nzOPAFFAKJWRqblU5y65QmxipilYZcpkQYPIpLLg2NwYoQzVnBiWBlGWGqS1oWiSYy4gXlJIkuoF0tKn0JSLBIGnBXsU4NIRChMJGIFLQw0RJTZUh6gHdjmEt_u7gtcvGZuygj5LkzQW5NkHsT9OCh6bOs79b4s3XXDnrT0o_31e-vr-HIdq4Ta2-gvVlt9S0cyq_Nx3p156bON94rvZI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKeiLU6c4r3nwTbs16SWNb0McE2sRN2FvJU1SEKQbu_j7TdKu80EE30qbhnJO0u87yflyAG5EhIM8kNRRXPmOTwV2MkmJIwjlSvgaEzIrFI5pkkSTCXttwF2thVFK2eQz1TWXdi9fTsXKLJX1QqKHDAu3YDvQvbilWqteUXE1Mw8t3yU4JA7x6GStknFZb5wk8cikcpGunqQaR00dG2IE1djSyw0o_aiyYkFm0Prf5x3AfkUmUb_0_iE0VHEErXWhBlTN2zYMY_Rma87PK9XlPeqjsfbiotp80o9nGx1SgUrFPuKFRBwN-GKJRlOTQn0M74PH8cPQqUooOALTyNf_OsHMtNRRVubLyGUiIlwjkp8zoYkMloQoRjNGOM1zD4cqD_MsUER4LAsZCbwTaBbTQp0C4tQTGt6lryJNCbjLdSwieJjpeInK3CUdwGsbpqI6X9yUufhMbZzhstS6IDUuSCsXdOC2fmdWnq7xZ-u2MXrdsrL32e-3r2F3OH6J0_gpeT6HPdNRmWZ7Ac3lfKUuYUd8LT8W8ys7jL4B7GTA2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L+Regularization%3A+A+Thresholding+Representation+Theory+and+a+Fast+Solver&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xu%2C+Zongben&rft.au=Chang%2C+Xiangyu&rft.au=Xu%2C+Fengmin&rft.au=Zhang%2C+Hai&rft.date=2012-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=23&rft.issue=7&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1109%2FTNNLS.2012.2197412&rft_id=info%3Apmid%2F24807129&rft.externalDocID=6205396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon