Epitaxial Growth of CsPbX 3 (X = Cl, Br, I) Perovskite Quantum Dots via Surface Chemical Conversion of Cs 2 GeF 6 Double Perovskites: A Novel Strategy for the Formation of Leadless Hybrid Perovskite Phosphors with Enhanced Stability
Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of lead and the lack of long‐term stability are potential obstacles for the application of LHPs. Herein, the epitaxial synthesis of CsPbX 3 (X = Cl...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 31; číslo 16; s. e1807592 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
01.04.2019
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of lead and the lack of long‐term stability are potential obstacles for the application of LHPs. Herein, the epitaxial synthesis of CsPbX 3 (X = Cl, Br, I) perovskite quantum dots (QDs) by surface chemical conversion of Cs 2 GeF 6 double perovskites with PbX 2 (X = Cl, Br, I) is reported. The experimental results show that the surface of the Cs 2 GeF 6 double perovskites is partially converted into CsPbX 3 perovskite QDs and forms a CsPbX 3 /Cs 2 GeF 6 hybrid structure. The theoretical calculations reveal that the CsPbBr 3 conversion proceeds at the Cs 2 GeF 6 edge through sequential growth of multiple PbBr 6 4− layers. Through the conversion strategy, luminescent and color‐tunable CsPbX 3 QDs can be obtained, and these products present high stability against decomposition due to anchoring effects. Moreover, by partially converting red emissive Cs 2 GeF 6 :Mn 4+ to green emissive CsPbBr 3 , the CsPbBr 3 /Cs 2 GeF 6 :Mn 4+ hybrid can be employed as a low‐lead hybrid perovskite phosphor on blue LED chips to produce white light. The leadless CsPbX 3 /Cs 2 GeF 6 hybrid structure with stable photoluminescence opens new paths for the rational design of efficient emission phosphors and may stimulate the design of other functional CsPbX 3 /Cs‐containing hybrid structures. |
|---|---|
| AbstractList | Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of lead and the lack of long‐term stability are potential obstacles for the application of LHPs. Herein, the epitaxial synthesis of CsPbX 3 (X = Cl, Br, I) perovskite quantum dots (QDs) by surface chemical conversion of Cs 2 GeF 6 double perovskites with PbX 2 (X = Cl, Br, I) is reported. The experimental results show that the surface of the Cs 2 GeF 6 double perovskites is partially converted into CsPbX 3 perovskite QDs and forms a CsPbX 3 /Cs 2 GeF 6 hybrid structure. The theoretical calculations reveal that the CsPbBr 3 conversion proceeds at the Cs 2 GeF 6 edge through sequential growth of multiple PbBr 6 4− layers. Through the conversion strategy, luminescent and color‐tunable CsPbX 3 QDs can be obtained, and these products present high stability against decomposition due to anchoring effects. Moreover, by partially converting red emissive Cs 2 GeF 6 :Mn 4+ to green emissive CsPbBr 3 , the CsPbBr 3 /Cs 2 GeF 6 :Mn 4+ hybrid can be employed as a low‐lead hybrid perovskite phosphor on blue LED chips to produce white light. The leadless CsPbX 3 /Cs 2 GeF 6 hybrid structure with stable photoluminescence opens new paths for the rational design of efficient emission phosphors and may stimulate the design of other functional CsPbX 3 /Cs‐containing hybrid structures. Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of lead and the lack of long-term stability are potential obstacles for the application of LHPs. Herein, the epitaxial synthesis of CsPbX (X = Cl, Br, I) perovskite quantum dots (QDs) by surface chemical conversion of Cs GeF double perovskites with PbX (X = Cl, Br, I) is reported. The experimental results show that the surface of the Cs GeF double perovskites is partially converted into CsPbX perovskite QDs and forms a CsPbX /Cs GeF hybrid structure. The theoretical calculations reveal that the CsPbBr conversion proceeds at the Cs GeF edge through sequential growth of multiple PbBr layers. Through the conversion strategy, luminescent and color-tunable CsPbX QDs can be obtained, and these products present high stability against decomposition due to anchoring effects. Moreover, by partially converting red emissive Cs GeF :Mn to green emissive CsPbBr , the CsPbBr /Cs GeF :Mn hybrid can be employed as a low-lead hybrid perovskite phosphor on blue LED chips to produce white light. The leadless CsPbX /Cs GeF hybrid structure with stable photoluminescence opens new paths for the rational design of efficient emission phosphors and may stimulate the design of other functional CsPbX /Cs-containing hybrid structures. |
| Author | Li, Kai Wu, Zhijian Dang, Peipei Lin, Jun Liang, Sisi Liu, Manman Xiao, Hui Lian, Hongzhou Wei, Yi Cheng, Ziyong |
| Author_xml | – sequence: 1 givenname: Yi surname: Wei fullname: Wei, Yi organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China – sequence: 2 givenname: Kai surname: Li fullname: Li, Kai organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China – sequence: 3 givenname: Ziyong orcidid: 0000-0002-9434-1046 surname: Cheng fullname: Cheng, Ziyong organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China – sequence: 4 givenname: Manman surname: Liu fullname: Liu, Manman organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China – sequence: 5 givenname: Hui surname: Xiao fullname: Xiao, Hui organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China – sequence: 6 givenname: Peipei surname: Dang fullname: Dang, Peipei organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China – sequence: 7 givenname: Sisi surname: Liang fullname: Liang, Sisi organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China – sequence: 8 givenname: Zhijian surname: Wu fullname: Wu, Zhijian organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China – sequence: 9 givenname: Hongzhou surname: Lian fullname: Lian, Hongzhou organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China – sequence: 10 givenname: Jun surname: Lin fullname: Lin, Jun organization: State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China, University of Science and Technology of China Hefei 230026 China, School of Applied Physics and Materials Wuyi University Jiangmen Guangdong 529020 China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30803066$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kdFu0zAUhi00xLrBLZfoXIK0FDtukgaJixHablIFRQNpd9GJc0wMSVzZTkffmMcgVTc0IXF1JOt8n87v_4yd9LYnxl4KPhWcx2-x7nAaczHnWZLHT9hEJLGIZjxPTtiE5zKJ8nQ2P2Vn3v_gnOcpT5-xU8nnXPI0nbDfi60J-MtgCytn70IDVkPhN9UtSHh9C--haC_gg7uA6zewIWd3_qcJBF8G7MPQwUcbPOwMws3gNCqCoqHOqFFX2H5HzhvbH5UQw4qWkI7IULX0SObfwSV8sjtq4SY4DPR9D9o6CA3B0roOw71kTVi35D1c7Stn6sf3bBrrt411Hu7MGGLRN9grqkchVqY1Yf-cPdXYenpxP8_Zt-Xia3EVrT-vrovLdaREloUIa5HNRcqzuZQ56nQmRaxzjUgJVVLXWGfjo4opTnRWizwZAaV4EleyUqhyec5eHb3boeqoLrfOdOj25cOXjwuz44Jy1ntHulRjA4eIY3bTloKXh2bLQ7Pl32ZHbPoP9mD-D_AHu7CnsA |
| CitedBy_id | crossref_primary_10_1016_j_ssc_2024_115654 crossref_primary_10_1002_adom_202501734 crossref_primary_10_1016_j_solener_2024_112596 crossref_primary_10_1002_smll_201905226 crossref_primary_10_1021_jacs_4c02315 crossref_primary_10_1002_adfm_202304750 crossref_primary_10_1038_s41427_022_00433_0 crossref_primary_10_1002_adom_202302494 crossref_primary_10_1002_smll_202307972 crossref_primary_10_1007_s12274_023_5922_5 crossref_primary_10_3390_cryst13060864 crossref_primary_10_1039_D1NR01492G crossref_primary_10_1007_s42114_024_01026_x crossref_primary_10_1016_j_jcis_2025_138883 crossref_primary_10_1007_s11814_024_00315_x crossref_primary_10_1039_D3NR05034C crossref_primary_10_1039_D0EE02902E crossref_primary_10_29026_oea_2022_200075 crossref_primary_10_1016_j_cej_2019_122735 crossref_primary_10_1016_j_cej_2020_127547 crossref_primary_10_1016_j_mseb_2023_117171 crossref_primary_10_1002_smll_202107452 crossref_primary_10_1016_j_jlumin_2022_119321 crossref_primary_10_1016_j_colsurfa_2024_134153 crossref_primary_10_1002_slct_202201880 crossref_primary_10_1002_adom_201901485 crossref_primary_10_1002_adfm_202518377 crossref_primary_10_1016_j_cej_2021_128530 crossref_primary_10_1002_adom_202200720 crossref_primary_10_1002_adpr_202000158 crossref_primary_10_1002_adom_202100434 crossref_primary_10_1063_5_0137866 crossref_primary_10_1039_C9QI00777F crossref_primary_10_1016_j_jallcom_2022_166322 crossref_primary_10_1016_j_mseb_2024_117761 crossref_primary_10_1002_lpor_202100278 crossref_primary_10_1364_PRJ_450483 crossref_primary_10_1016_j_materresbull_2022_111987 crossref_primary_10_1016_j_physb_2024_416360 crossref_primary_10_1002_crat_202200051 crossref_primary_10_1016_j_materresbull_2023_112241 crossref_primary_10_1002_smll_202107548 crossref_primary_10_1016_j_mtnano_2022_100288 crossref_primary_10_1002_crat_70006 crossref_primary_10_1016_j_materresbull_2021_111592 crossref_primary_10_1007_s12598_024_02864_w crossref_primary_10_1016_j_ceramint_2021_01_195 crossref_primary_10_1016_j_clay_2021_106158 crossref_primary_10_1002_adma_201900682 crossref_primary_10_29026_oea_2021_200075 crossref_primary_10_1002_adom_202203029 crossref_primary_10_1038_s41467_020_20551_z crossref_primary_10_1007_s12274_024_6975_9 crossref_primary_10_1039_D0QI00208A crossref_primary_10_1002_adma_202003309 crossref_primary_10_1007_s12274_020_3026_z crossref_primary_10_1039_D0NR00069H crossref_primary_10_1002_adom_202303038 crossref_primary_10_1002_adom_202300440 crossref_primary_10_1016_j_jhazmat_2025_137845 crossref_primary_10_1002_adom_202400250 crossref_primary_10_1016_j_nantod_2021_101179 crossref_primary_10_1039_D0QI00462F crossref_primary_10_1016_j_jlumin_2019_05_057 crossref_primary_10_1039_D0QI00498G crossref_primary_10_1002_advs_202306398 crossref_primary_10_1016_j_jre_2024_04_021 crossref_primary_10_1016_j_cej_2020_128056 crossref_primary_10_1364_PRJ_399845 |
| Cites_doi | 10.1021/acsami.8b03158 10.1038/s41560-018-0200-6 10.1021/acsenergylett.8b01025 10.1021/acsnano.8b04209 10.1021/acs.nanolett.7b04659 10.1021/nl5048779 10.1021/jacs.5b13470 10.1002/ange.201800660 10.1038/s41586-018-0576-2 10.1021/acs.chemmater.8b00587 10.1021/acs.nanolett.5b04981 10.1021/acsami.8b04198 10.1021/acsnano.7b04683 10.1088/1361-6528/aac84d 10.1021/acs.chemmater.6b00433 10.1002/anie.201703703 10.1002/adfm.201704371 10.1021/acs.chemmater.6b01329 10.1038/s41586-018-0575-3 10.1002/adma.201800774 10.1021/ja809598r 10.1021/jacs.7b11003 10.1021/jacs.7b13477 10.1039/C8CS00740C 10.1039/C8CC02802H 10.1021/acs.inorgchem.7b01890 10.1021/acsami.6b14423 10.1021/acs.chemmater.8b03330 10.1021/acs.nanolett.6b01168 10.1021/jacs.8b04763 10.1021/acsnano.7b05442 10.1038/s41566-018-0260-y 10.1002/anie.201713332 10.1038/ncomms11683 10.1002/adfm.201600109 10.1002/adfm.201606750 10.1002/ange.201704739 10.1038/s41467-017-01248-2 10.1021/acs.jpclett.8b00301 10.1002/adfm.201704288 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM |
| DOI | 10.1002/adma.201807592 |
| DatabaseName | CrossRef PubMed |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| ExternalDocumentID | 30803066 10_1002_adma_201807592 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science and Technology Development Planning Project of Jilin Province grantid: 20170414003GH – fundername: National Natural Science Foundation of China grantid: 51772288 – fundername: Major Program of Basic Research and Applied Research of Guangdong Province grantid: 2017KZDXM083 – fundername: Science and Technology Development Planning Project of Jilin Province grantid: 20170101187JC – fundername: National Natural Science Foundation of China grantid: 51472231 – fundername: CAS-Croucher Funding Scheme for Joint Laboratories grantid: CAS18204 – fundername: National Natural Science Foundation of China grantid: 51720105015 – fundername: Jiangmen Innovative Research Team Program (2017) – fundername: Key Research Program of Frontier Sciences of CAS grantid: YZDY-SSW-JSC018 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHHS AAYOK ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN NPM RWI RWM WRC |
| ID | FETCH-LOGICAL-c177t-ad17816078339af64312f9faae5eb3fdad7f64c2e25f7d195ad1cc052b3bcac93 |
| ISSN | 0935-9648 |
| IngestDate | Wed Feb 19 02:36:14 EST 2025 Sat Nov 29 07:24:31 EST 2025 Tue Nov 18 21:47:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | quantum dots enhanced stability leadless perovskite epitaxial growth |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c177t-ad17816078339af64312f9faae5eb3fdad7f64c2e25f7d195ad1cc052b3bcac93 |
| ORCID | 0000-0002-9434-1046 |
| PMID | 30803066 |
| ParticipantIDs | pubmed_primary_30803066 crossref_citationtrail_10_1002_adma_201807592 crossref_primary_10_1002_adma_201807592 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Apr |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-Apr |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| References | e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_4_4 e_1_2_4_7_1 e_1_2_4_4_3 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_9_2 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_14_1 e_1_2_4_13_3 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_13_4 e_1_2_4_17_2 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_17_1 e_1_2_4_19_1 |
| References_xml | – ident: e_1_2_4_18_1 doi: 10.1021/acsami.8b03158 – ident: e_1_2_4_2_2 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_4_4_3 doi: 10.1021/acsenergylett.8b01025 – ident: e_1_2_4_13_4 doi: 10.1021/acsnano.8b04209 – ident: e_1_2_4_9_2 doi: 10.1021/acs.nanolett.7b04659 – ident: e_1_2_4_3_1 doi: 10.1021/nl5048779 – ident: e_1_2_4_6_1 doi: 10.1021/jacs.5b13470 – ident: e_1_2_4_9_1 doi: 10.1002/ange.201800660 – ident: e_1_2_4_1_1 doi: 10.1038/s41586-018-0576-2 – ident: e_1_2_4_12_2 doi: 10.1021/acs.chemmater.8b00587 – ident: e_1_2_4_20_1 doi: 10.1021/acs.nanolett.5b04981 – ident: e_1_2_4_17_2 doi: 10.1021/acsami.8b04198 – ident: e_1_2_4_8_1 doi: 10.1021/acsnano.7b04683 – ident: e_1_2_4_13_3 doi: 10.1088/1361-6528/aac84d – ident: e_1_2_4_10_1 doi: 10.1021/acs.chemmater.6b00433 – ident: e_1_2_4_15_1 doi: 10.1002/anie.201703703 – ident: e_1_2_4_16_2 doi: 10.1002/adfm.201704371 – ident: e_1_2_4_11_1 doi: 10.1021/acs.chemmater.6b01329 – ident: e_1_2_4_1_2 doi: 10.1038/s41586-018-0575-3 – ident: e_1_2_4_12_1 doi: 10.1002/adma.201800774 – ident: e_1_2_4_2_1 doi: 10.1021/ja809598r – ident: e_1_2_4_13_1 doi: 10.1021/jacs.7b11003 – ident: e_1_2_4_3_2 doi: 10.1021/jacs.7b13477 – ident: e_1_2_4_5_2 doi: 10.1039/C8CS00740C – ident: e_1_2_4_17_1 doi: 10.1039/C8CC02802H – ident: e_1_2_4_19_1 doi: 10.1021/acs.inorgchem.7b01890 – ident: e_1_2_4_22_1 doi: 10.1021/acsami.6b14423 – ident: e_1_2_4_13_2 doi: 10.1021/acs.chemmater.8b03330 – ident: e_1_2_4_23_1 doi: 10.1021/acs.nanolett.6b01168 – ident: e_1_2_4_4_2 doi: 10.1021/jacs.8b04763 – ident: e_1_2_4_4_4 doi: 10.1021/acsnano.7b05442 – ident: e_1_2_4_1_3 doi: 10.1038/s41566-018-0260-y – ident: e_1_2_4_21_1 doi: 10.1002/anie.201713332 – ident: e_1_2_4_24_1 doi: 10.1038/ncomms11683 – ident: e_1_2_4_4_1 doi: 10.1002/adfm.201600109 – ident: e_1_2_4_25_1 doi: 10.1002/adfm.201606750 – ident: e_1_2_4_7_1 doi: 10.1002/ange.201704739 – ident: e_1_2_4_16_1 doi: 10.1038/s41467-017-01248-2 – ident: e_1_2_4_5_1 doi: 10.1021/acs.jpclett.8b00301 – ident: e_1_2_4_14_1 doi: 10.1002/adfm.201704288 |
| SSID | ssj0009606 |
| Score | 2.5579927 |
| Snippet | Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of... |
| SourceID | pubmed crossref |
| SourceType | Index Database Enrichment Source |
| StartPage | e1807592 |
| Title | Epitaxial Growth of CsPbX 3 (X = Cl, Br, I) Perovskite Quantum Dots via Surface Chemical Conversion of Cs 2 GeF 6 Double Perovskites: A Novel Strategy for the Formation of Leadless Hybrid Perovskite Phosphors with Enhanced Stability |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30803066 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMBFP8ZoH8a-131xDxvbcM1iu67swR6yNGkLJYTRbqEvQbZlEkjsEKch-Y_3Z-z0GWdbYXvYSwiycrF9P0l30ulEyJuEZ0e0kWBDihJ0UELacJnHIzdBSw7t_zgLZdrFbxe02436_bi3tb1v9sIsxrQoouUynv5XVWMZKltsnf0HdVuhWIDfUen4iWrHz79SfFucA7IUE-Gn6GLPhzLgouolfScQ5mTfeRucOC212CDVdS5mBnp8Vi4qMZUr4jxxIJqgbT2vnMWIYecyyxm2f5tcoCVC1eU8mxLu-M4p7zjHwhwXO7HWwiq1871bLrhcARd5KVY2tLFjdk7KlQqkbSz63bOV2EVWv6PesKymQ3EskJw2bhdDFbeAlrKM7d1Ymm6aqAYUrd63eOzvfFQMuTg62s58YJEcgEY2KElFNjBbgA-susLr0arUQ7ysd6O2ORUT3bb0tIkX16JtuO7qfeE9qyM-zVigRyTNfL1n555I26zO7ftt2FFpbFkmM1n9oSK-6-lE8haghY5e2i_Zv5U9oS9tk10fBWAXvXvytXN1sc4hjc6myTva8D9u_t0euWsEbJhYG86SNJou75N72tuBpqL0AdnixUOyX8uB-Yj8sLyC4hXKHCSvEMD7PnyG1vgQvswO4fwDrJkATSkISgEpBU0pGEphTakSCT4gpXAMitKasOoTNEEyCoZRQEYBGQXLqBBiGAXFaP1-LKMgGAXDKFhGH5OrTvuydebq40fc1KN07rLMo5HIvxgFQcxyNN09P49zxnjIkyDPWEaxMPW5H-Y08-IQf5CmjdBPgiRlaRw8ITtFWfBnBGKK1Rsp5eh9HMUZjVjEeeB7eZYF1EvzA-IajQ1SnZtfHBEzHqis4v5AKHtglX1A3tn6U5WV5taaTxUAtp6h5PmtV16QvXWLeUl25rMb_orcSRfzUTV7ran8CVot3Fw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxial+Growth+of+CsPbX+3+%28X+%3D+Cl%2C+Br%2C+I%29+Perovskite+Quantum+Dots+via+Surface+Chemical+Conversion+of+Cs+2+GeF+6+Double+Perovskites%3A+A+Novel+Strategy+for+the+Formation+of+Leadless+Hybrid+Perovskite+Phosphors+with+Enhanced+Stability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wei%2C+Yi&rft.au=Li%2C+Kai&rft.au=Cheng%2C+Ziyong&rft.au=Liu%2C+Manman&rft.date=2019-04-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=16&rft.spage=e1807592&rft_id=info:doi/10.1002%2Fadma.201807592&rft_id=info%3Apmid%2F30803066&rft.externalDocID=30803066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |