Comparison of SVSF-KF Adaptive Estimation Algorithms on an Electrohydrostatic Actuator Subject to a Fault
State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 25; číslo 2; s. 2905 - 2920 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear state estimation problems. The smooth variable structure filter (SVSF) is a model-based strategy that is also formulated as a predictor-corrector. Despite being a suboptimal estimator, the SVSF is highly robust to modeling uncertainties, errors, and system change. The combination of the SVSF with the KF (SVSF-KF) results in an adaptive estimation algorithm that provides an optimal KF estimate in normal operating conditions, and a robust SVSF estimate in the presence of faults or uncertainties. While effective in some cases, the SVSF-KF has been shown to suffer from several drawbacks associated with the time-varying smoothing boundary layer (SBL) and adaptive gain used to detect system change. Several new approaches have been proposed in recent years with the aim of improving the SVSF-KF's performance. Among these approaches is a novel gain formulation based on the normalized innovation squares (NISs), while another makes use of the interacting multiple model (IMM) framework. In this article, we review the newly proposed SVSF-KF formulations and compare their performance on an electrohydrostatic actuator (EHA) test case. |
|---|---|
| AbstractList | State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear state estimation problems. The smooth variable structure filter (SVSF) is a model-based strategy that is also formulated as a predictor-corrector. Despite being a suboptimal estimator, the SVSF is highly robust to modeling uncertainties, errors, and system change. The combination of the SVSF with the KF (SVSF-KF) results in an adaptive estimation algorithm that provides an optimal KF estimate in normal operating conditions, and a robust SVSF estimate in the presence of faults or uncertainties. While effective in some cases, the SVSF-KF has been shown to suffer from several drawbacks associated with the time-varying smoothing boundary layer (SBL) and adaptive gain used to detect system change. Several new approaches have been proposed in recent years with the aim of improving the SVSF-KF's performance. Among these approaches is a novel gain formulation based on the normalized innovation squares (NISs), while another makes use of the interacting multiple model (IMM) framework. In this article, we review the newly proposed SVSF-KF formulations and compare their performance on an electrohydrostatic actuator (EHA) test case. |
| Author | Hilal, Waleed Eggleton, Charles D. Gadsden, Stephen A. Goodman, Jacob |
| Author_xml | – sequence: 1 givenname: Jacob surname: Goodman fullname: Goodman, Jacob email: jg4@umbc.edu organization: Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA – sequence: 2 givenname: Waleed orcidid: 0000-0002-9164-165X surname: Hilal fullname: Hilal, Waleed email: hilalw@mcmaster.ca organization: Intelligent and Cognitive Engineering (ICE) Laboratory, McMaster University, Hamilton, ON, Canada – sequence: 3 givenname: Stephen A. orcidid: 0000-0003-3749-0878 surname: Gadsden fullname: Gadsden, Stephen A. email: gadsden@mcmaster.ca organization: Intelligent and Cognitive Engineering (ICE) Laboratory, McMaster University, Hamilton, ON, Canada – sequence: 4 givenname: Charles D. surname: Eggleton fullname: Eggleton, Charles D. email: eggleton@umbc.edu organization: Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA |
| BookMark | eNpNkE9PwyAYh4mZidv0A5h4IPHcCQUKPTZL579FD12MN0Jb6rp0pQI12beXZh488ZLf877wPgsw602vAbjFaIUxSh9eivxtFaOYrghlMRXiAswxYyLCnIrZVBMUUcI_r8DCuQNCOOWMz0G7NsdB2daZHpoGFh_FJnrdwKxWg29_NMydb4_KtyHOui9jW78_Ohhuqod5pytvzf5UW-N8gCqYVX5U3lhYjOUhpNAbqOBGjZ2_BpeN6py--TuXYLfJd-unaPv--LzOtlGFeeKjiqeobLhgROiwWVmjGukkZQliCaFCUU55XbG4bpKkYYKlMUYhihOaqLpEZAnuz2MHa75H7bw8mNH24UVJJiFxgEWg8Jmqwted1Y0cbNjTniRGchIqJ6FyEir_hIaeu3NPq7X-x3OOMEHkF2zTcrQ |
| CODEN | ISJEAZ |
| Cites_doi | 10.1002/0471221279 10.1007/978-0-8176-4893-0 10.1016/j.ifacol.2016.10.585 10.1080/00051144.2017.1372123 10.1109/TII.2011.2123907 10.1109/TIM.2020.2999165 10.1115/1.1590682 10.3390/en14248560 10.1109/ICMMT.2016.7762534 10.1109/RADAR.2016.8059444 10.1109/ISMA.2013.6547375 10.1002/0470045345 10.1201/9781315221656 10.1109/ACCESS.2019.2946609 10.1115/1.3662552 10.1080/0952813x.2021.1908430 10.1016/j.dsp.2020.102912 10.1016/j.conengprac.2018.04.015 10.1016/j.aeue.2018.10.004 10.1115/1.2907393 10.1155/2019/2765731 10.2991/jrnal.2017.4.2.8 10.1109/TAC.1977.1101446 10.1117/12.2519771 10.2514/4.867200 10.1115/1.2229259 10.1002/acs.2571 10.1109/lsens.2020.2983706 10.1109/TITS.2015.2504331 10.1109/CCECE.2015.7129398 10.1117/12.2520018 10.1117/1.JRS.11.015018 10.1109/TAES.2017.2649138 10.1016/j.rineng.2022.100785 10.1002/9781118984987 10.1115/DETC2015-47436 10.1002/acs.3067 10.1109/jsyst.2019.2919792 10.1109/IEMTRONICS51293.2020.9216381 10.5954/ICAROB.2017.GS9-5 10.1115/IMECE2014-36412 10.1109/JPROC.2007.893255 10.3389/fams.2020.585439 10.1117/12.2262570 10.1016/j.sigpro.2017.01.001 10.1016/j.ifacol.2019.11.707 10.1016/j.ifacol.2019.08.051 10.1109/jsen.2011.2166066 10.1016/j.sigpro.2018.09.036 10.1109/jsen.2014.2332098 10.1109/ssd.2015.7348201 10.1145/3038884.3038894 10.1109/jsen.2014.2388153 10.3390/rs13224612 10.1109/jsen.2021.3050456 10.1109/ICoSC.2017.7958664 10.1109/urai.2018.8441876 10.1016/j.cja.2016.02.005 10.1115/1.4001338 10.12928/telkomnika.v19i1.16223 10.1109/AERO.2016.7500504 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3452488 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 2920 |
| ExternalDocumentID | 10_1109_JSEN_2024_3452488 10770130 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c176t-c790bf78538e110bd0d0e6956056348a4747dc52df66f58592100562646adb03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397848200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Tue Jul 22 16:41:00 EDT 2025 Sat Nov 29 04:32:25 EST 2025 Fri Jun 13 02:43:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c176t-c790bf78538e110bd0d0e6956056348a4747dc52df66f58592100562646adb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9164-165X 0000-0003-3749-0878 |
| PQID | 3155820568 |
| PQPubID | 75733 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3452488 ieee_primary_10770130 proquest_journals_3155820568 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 Gelb (ref6) 2001; 64 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 Gadsden (ref33); 9474 ref54 Afshari (ref27) 2014; 15 ref17 ref16 ref19 ref18 Brown (ref7) 1997 Gadsden (ref28) 2011 McCullough (ref71) 2011 ref51 ref50 Shaked (ref14) ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref9 ref4 ref3 ref5 Al-Shabi (ref29) 2011 Genovese (ref74) 2001; 22 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 Maybeck (ref8) 1979 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref65 Afshari (ref35) 2015 ref60 Gadsden (ref40); 9474 ref62 ref61 Qin (ref66) |
| References_xml | – ident: ref19 doi: 10.1002/0471221279 – ident: ref16 doi: 10.1007/978-0-8176-4893-0 – ident: ref39 doi: 10.1016/j.ifacol.2016.10.585 – ident: ref41 doi: 10.1080/00051144.2017.1372123 – start-page: 2278 volume-title: Proc. 31st 31st IEEE Conf. Decision Control ident: ref14 article-title: H∞-optimal estimation: A tutorial – ident: ref22 doi: 10.1109/TII.2011.2123907 – ident: ref59 doi: 10.1109/TIM.2020.2999165 – ident: ref17 doi: 10.1115/1.1590682 – ident: ref57 doi: 10.3390/en14248560 – ident: ref62 doi: 10.1109/ICMMT.2016.7762534 – ident: ref32 doi: 10.1109/RADAR.2016.8059444 – ident: ref31 doi: 10.1109/ISMA.2013.6547375 – volume: 9474 volume-title: Proc. SPIE ident: ref40 article-title: Two-pass smoother based on the SVSF estimation strategy – ident: ref15 doi: 10.1002/0470045345 – volume: 22 start-page: 614 issue: 4 year: 2001 ident: ref74 article-title: The interacting multiple model algorithm for accurate state estimation of maneuvering targets publication-title: Johns Hopkins APL Tech. Dig. (Appl. Phys. Lab.) – ident: ref13 doi: 10.1201/9781315221656 – ident: ref47 doi: 10.1109/ACCESS.2019.2946609 – ident: ref1 doi: 10.1115/1.3662552 – year: 2011 ident: ref28 article-title: Smooth variable structure filtering: Theory and applications – ident: ref55 doi: 10.1080/0952813x.2021.1908430 – ident: ref24 doi: 10.1016/j.dsp.2020.102912 – ident: ref63 doi: 10.1016/j.conengprac.2018.04.015 – ident: ref10 doi: 10.1016/j.aeue.2018.10.004 – ident: ref73 doi: 10.1115/1.2907393 – ident: ref64 doi: 10.1155/2019/2765731 – ident: ref43 doi: 10.2991/jrnal.2017.4.2.8 – volume: 9474 volume-title: Proc. SPIE ident: ref33 article-title: Square-root formulation of the SVSF with applications to nonlinear target tracking problems – ident: ref23 doi: 10.1109/TAC.1977.1101446 – ident: ref68 doi: 10.1117/12.2519771 – ident: ref20 doi: 10.2514/4.867200 – ident: ref70 doi: 10.1115/1.2229259 – year: 2015 ident: ref35 article-title: The 2nd-order smooth variable structure filter (2nd-SVSF) for state estimation: Theory and applications – ident: ref67 doi: 10.1002/acs.2571 – ident: ref5 doi: 10.1109/lsens.2020.2983706 – year: 2011 ident: ref71 article-title: Design and characterization of a dual electro-hydrostatic actuator – volume: 15 start-page: 181 issue: 3 year: 2014 ident: ref27 article-title: Robust fault diagnosis of an electro-hydrostatic actuator using the novel dynamic second-order SVSF and IMM strategy publication-title: Int. J. Fluid Power – ident: ref38 doi: 10.1109/TITS.2015.2504331 – ident: ref26 doi: 10.1109/CCECE.2015.7129398 – year: 2011 ident: ref29 article-title: The general toeplitz/observability SVSF – ident: ref65 doi: 10.1117/12.2520018 – ident: ref34 doi: 10.1117/1.JRS.11.015018 – ident: ref48 doi: 10.1109/TAES.2017.2649138 – start-page: 4719 volume-title: Proc. 32nd Chin. Control Conf. ident: ref66 article-title: A nonlinear filter switch method based on normalized innovation square – ident: ref72 doi: 10.1016/j.rineng.2022.100785 – ident: ref2 doi: 10.1002/9781118984987 – ident: ref36 doi: 10.1115/DETC2015-47436 – ident: ref58 doi: 10.1002/acs.3067 – volume: 64 issue: 4 volume-title: Applied Optimal Estimation year: 2001 ident: ref6 – ident: ref54 doi: 10.1109/jsyst.2019.2919792 – ident: ref25 doi: 10.1109/IEMTRONICS51293.2020.9216381 – ident: ref44 doi: 10.5954/ICAROB.2017.GS9-5 – ident: ref60 doi: 10.1115/IMECE2014-36412 – ident: ref18 doi: 10.1109/JPROC.2007.893255 – ident: ref21 doi: 10.3389/fams.2020.585439 – ident: ref46 doi: 10.1117/12.2262570 – ident: ref9 doi: 10.1016/j.sigpro.2017.01.001 – ident: ref50 doi: 10.1016/j.ifacol.2019.11.707 – ident: ref51 doi: 10.1016/j.ifacol.2019.08.051 – ident: ref3 doi: 10.1109/jsen.2011.2166066 – ident: ref37 doi: 10.1016/j.sigpro.2018.09.036 – ident: ref11 doi: 10.1109/jsen.2014.2332098 – ident: ref53 doi: 10.1109/ssd.2015.7348201 – ident: ref45 doi: 10.1145/3038884.3038894 – volume-title: Stochastic Models, Estimation, and Control year: 1979 ident: ref8 article-title: Stochastic models, estimation, and control—Introduction – ident: ref12 doi: 10.1109/jsen.2014.2388153 – ident: ref61 doi: 10.3390/rs13224612 – ident: ref4 doi: 10.1109/jsen.2021.3050456 – ident: ref56 doi: 10.1109/ICoSC.2017.7958664 – issue: 4 year: 1997 ident: ref7 publication-title: Introduction to Random Signals and Applied Kalman Filtering – ident: ref52 doi: 10.1109/urai.2018.8441876 – ident: ref49 doi: 10.1016/j.cja.2016.02.005 – ident: ref69 doi: 10.1115/1.4001338 – ident: ref30 doi: 10.12928/telkomnika.v19i1.16223 – ident: ref42 doi: 10.1109/AERO.2016.7500504 |
| SSID | ssj0019757 |
| Score | 2.4251997 |
| Snippet | State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or... State estimation strategies are vital for obtaining knowledge of a dynamic system’s state when faced with limited measurement capability, sensor noise, or... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2905 |
| SubjectTerms | Actuators Adaptation models Adaptive algorithms Adaptive estimation Adaptive filtering Adaptive systems Algorithms Boundary layers Dynamical systems Estimation estimation theory Fault detection hydrostatic actuator interacting multiple models (IMMs) Kalman filter (KF) Kalman filters Measurement uncertainty Noise Noise measurement Predictor-corrector methods Robustness (mathematics) Sensor phenomena and characterization smooth variable structure filter (SVSF) State estimation Switches System dynamics Uncertainty |
| Title | Comparison of SVSF-KF Adaptive Estimation Algorithms on an Electrohydrostatic Actuator Subject to a Fault |
| URI | https://ieeexplore.ieee.org/document/10770130 https://www.proquest.com/docview/3155820568 |
| Volume | 25 |
| WOSCitedRecordID | wos001397848200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJiKZt2jTHRbaIyiKsyN5K2iTuwrqV3a7gv3eS1geIB28ttFBmMpn5Mv3mAzi3JjUR5klaSKkpt2WJIcU4jZUtCoP1QuxVFJ7uRb-fDofyoSWrey6MMcb_fGYu3aXv5euqXLijMoxwIVynbRmWhRANWeurZSCFH-uJEcwoj8SwbWEGTF7dDnp9hIIhv4x4HHKvsvKdhLyqyq-t2OeXbOufX7YNm20hSbqN53dgyUx3YePHeMFdWGsVzkfvezC-_hIcJJUlg6dBRu8y0tXq1W14pIeh3rAYSXfyXM3G9ehlTvBOTUmvkcoZvWtHEXEjXknX8U4QrhPceNxJDqkrokimFpN6Hx6z3uP1DW1lFmgZiKSmpZCssALzdmrQXIVmmpnE4aY4iXiqOCIOXcahtkliEV1IRImubEp4onTBogNYmVZTcwjE6X1iuhdSW8stD6TRGvESLgCrwkilHbj4NHv-2gzTyD0IYTJ3Psqdj_LWRx3Yd3b-8WBj4g6cfHoqb-NtnkdYFmEtEyfp0R-vHcN66KR7WUCD-ARW6tnCnMJq-VaP57Mzv5Q-AF6PxeM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WrtDtYeuPjGXtWj3sqaBWtmXLegwlJlvTMEgoeTOyJTWBLi6JU-h_35PstIXRh77ZYIO50-nu0_m7D-CXNamJME_SQkpNuS1LDCnGaaxsURisF2KvonAzFKNROp3Kvy1Z3XNhjDH-5zNz7i59L19X5dodlWGEC-E6bVvwMeY8DBq61nPTQAo_2BNjmFEeiWnbxAyYvPgz7o8QDIb8POJxyL3Oyksa8roq_23GPsNkX9_5bXvwpS0lSa_x_T58MIsD-PxqwOAB7LYa57PHQ5hfPksOksqS8c04o1cZ6Wl177Y80sdgb3iMpHd3Wy3n9ezfiuCdWpB-I5Yze9SOJOKGvJKeY54gYCe49bizHFJXRJFMre_qDkyy_uRyQFuhBVoGIqlpKSQrrMDMnRo0V6GZZiZxyClOIp4qjphDl3GobZJYxBcScaIrnBKeKF2w6BtsL6qF-Q7EKX5iwhdSW8stD6TRGhETLgGrwkilXTjbmD2_b8Zp5B6GMJk7H-XOR3nroy50nJ1fPdiYuAvHG0_lbcSt8ggLI6xm4iT98cZrp7A7mFwP8-Hv0dURfAqdkC8LaBAfw3a9XJufsFM-1PPV8sQvqyfV3skq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+SVSF-KF+Adaptive+Estimation+Algorithms+on+an+Electrohydrostatic+Actuator+Subject+to+a+Fault&rft.jtitle=IEEE+sensors+journal&rft.au=Goodman%2C+Jacob&rft.au=Hilal%2C+Waleed&rft.au=Gadsden%2C+Stephen+A.&rft.au=Eggleton%2C+Charles+D.&rft.date=2025-01-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=2&rft.spage=2905&rft.epage=2920&rft_id=info:doi/10.1109%2FJSEN.2024.3452488&rft.externalDocID=10770130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |