Comparison of SVSF-KF Adaptive Estimation Algorithms on an Electrohydrostatic Actuator Subject to a Fault

State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 25; číslo 2; s. 2905 - 2920
Hlavní autori: Goodman, Jacob, Hilal, Waleed, Gadsden, Stephen A., Eggleton, Charles D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear state estimation problems. The smooth variable structure filter (SVSF) is a model-based strategy that is also formulated as a predictor-corrector. Despite being a suboptimal estimator, the SVSF is highly robust to modeling uncertainties, errors, and system change. The combination of the SVSF with the KF (SVSF-KF) results in an adaptive estimation algorithm that provides an optimal KF estimate in normal operating conditions, and a robust SVSF estimate in the presence of faults or uncertainties. While effective in some cases, the SVSF-KF has been shown to suffer from several drawbacks associated with the time-varying smoothing boundary layer (SBL) and adaptive gain used to detect system change. Several new approaches have been proposed in recent years with the aim of improving the SVSF-KF's performance. Among these approaches is a novel gain formulation based on the normalized innovation squares (NISs), while another makes use of the interacting multiple model (IMM) framework. In this article, we review the newly proposed SVSF-KF formulations and compare their performance on an electrohydrostatic actuator (EHA) test case.
AbstractList State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or uncertain system dynamics. The Kalman filter (KF) is one of the most widely recognized filters and provides the optimal solution for linear state estimation problems. The smooth variable structure filter (SVSF) is a model-based strategy that is also formulated as a predictor-corrector. Despite being a suboptimal estimator, the SVSF is highly robust to modeling uncertainties, errors, and system change. The combination of the SVSF with the KF (SVSF-KF) results in an adaptive estimation algorithm that provides an optimal KF estimate in normal operating conditions, and a robust SVSF estimate in the presence of faults or uncertainties. While effective in some cases, the SVSF-KF has been shown to suffer from several drawbacks associated with the time-varying smoothing boundary layer (SBL) and adaptive gain used to detect system change. Several new approaches have been proposed in recent years with the aim of improving the SVSF-KF's performance. Among these approaches is a novel gain formulation based on the normalized innovation squares (NISs), while another makes use of the interacting multiple model (IMM) framework. In this article, we review the newly proposed SVSF-KF formulations and compare their performance on an electrohydrostatic actuator (EHA) test case.
Author Hilal, Waleed
Eggleton, Charles D.
Gadsden, Stephen A.
Goodman, Jacob
Author_xml – sequence: 1
  givenname: Jacob
  surname: Goodman
  fullname: Goodman, Jacob
  email: jg4@umbc.edu
  organization: Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
– sequence: 2
  givenname: Waleed
  orcidid: 0000-0002-9164-165X
  surname: Hilal
  fullname: Hilal, Waleed
  email: hilalw@mcmaster.ca
  organization: Intelligent and Cognitive Engineering (ICE) Laboratory, McMaster University, Hamilton, ON, Canada
– sequence: 3
  givenname: Stephen A.
  orcidid: 0000-0003-3749-0878
  surname: Gadsden
  fullname: Gadsden, Stephen A.
  email: gadsden@mcmaster.ca
  organization: Intelligent and Cognitive Engineering (ICE) Laboratory, McMaster University, Hamilton, ON, Canada
– sequence: 4
  givenname: Charles D.
  surname: Eggleton
  fullname: Eggleton, Charles D.
  email: eggleton@umbc.edu
  organization: Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
BookMark eNpNkE9PwyAYh4mZidv0A5h4IPHcCQUKPTZL579FD12MN0Jb6rp0pQI12beXZh488ZLf877wPgsw602vAbjFaIUxSh9eivxtFaOYrghlMRXiAswxYyLCnIrZVBMUUcI_r8DCuQNCOOWMz0G7NsdB2daZHpoGFh_FJnrdwKxWg29_NMydb4_KtyHOui9jW78_Ohhuqod5pytvzf5UW-N8gCqYVX5U3lhYjOUhpNAbqOBGjZ2_BpeN6py--TuXYLfJd-unaPv--LzOtlGFeeKjiqeobLhgROiwWVmjGukkZQliCaFCUU55XbG4bpKkYYKlMUYhihOaqLpEZAnuz2MHa75H7bw8mNH24UVJJiFxgEWg8Jmqwted1Y0cbNjTniRGchIqJ6FyEir_hIaeu3NPq7X-x3OOMEHkF2zTcrQ
CODEN ISJEAZ
Cites_doi 10.1002/0471221279
10.1007/978-0-8176-4893-0
10.1016/j.ifacol.2016.10.585
10.1080/00051144.2017.1372123
10.1109/TII.2011.2123907
10.1109/TIM.2020.2999165
10.1115/1.1590682
10.3390/en14248560
10.1109/ICMMT.2016.7762534
10.1109/RADAR.2016.8059444
10.1109/ISMA.2013.6547375
10.1002/0470045345
10.1201/9781315221656
10.1109/ACCESS.2019.2946609
10.1115/1.3662552
10.1080/0952813x.2021.1908430
10.1016/j.dsp.2020.102912
10.1016/j.conengprac.2018.04.015
10.1016/j.aeue.2018.10.004
10.1115/1.2907393
10.1155/2019/2765731
10.2991/jrnal.2017.4.2.8
10.1109/TAC.1977.1101446
10.1117/12.2519771
10.2514/4.867200
10.1115/1.2229259
10.1002/acs.2571
10.1109/lsens.2020.2983706
10.1109/TITS.2015.2504331
10.1109/CCECE.2015.7129398
10.1117/12.2520018
10.1117/1.JRS.11.015018
10.1109/TAES.2017.2649138
10.1016/j.rineng.2022.100785
10.1002/9781118984987
10.1115/DETC2015-47436
10.1002/acs.3067
10.1109/jsyst.2019.2919792
10.1109/IEMTRONICS51293.2020.9216381
10.5954/ICAROB.2017.GS9-5
10.1115/IMECE2014-36412
10.1109/JPROC.2007.893255
10.3389/fams.2020.585439
10.1117/12.2262570
10.1016/j.sigpro.2017.01.001
10.1016/j.ifacol.2019.11.707
10.1016/j.ifacol.2019.08.051
10.1109/jsen.2011.2166066
10.1016/j.sigpro.2018.09.036
10.1109/jsen.2014.2332098
10.1109/ssd.2015.7348201
10.1145/3038884.3038894
10.1109/jsen.2014.2388153
10.3390/rs13224612
10.1109/jsen.2021.3050456
10.1109/ICoSC.2017.7958664
10.1109/urai.2018.8441876
10.1016/j.cja.2016.02.005
10.1115/1.4001338
10.12928/telkomnika.v19i1.16223
10.1109/AERO.2016.7500504
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3452488
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 2920
ExternalDocumentID 10_1109_JSEN_2024_3452488
10770130
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c176t-c790bf78538e110bd0d0e6956056348a4747dc52df66f58592100562646adb03
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397848200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Jul 22 16:41:00 EDT 2025
Sat Nov 29 04:32:25 EST 2025
Fri Jun 13 02:43:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-c790bf78538e110bd0d0e6956056348a4747dc52df66f58592100562646adb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9164-165X
0000-0003-3749-0878
PQID 3155820568
PQPubID 75733
PageCount 16
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3452488
ieee_primary_10770130
proquest_journals_3155820568
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
Gelb (ref6) 2001; 64
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
Gadsden (ref33); 9474
ref54
Afshari (ref27) 2014; 15
ref17
ref16
ref19
ref18
Brown (ref7) 1997
Gadsden (ref28) 2011
McCullough (ref71) 2011
ref51
ref50
Shaked (ref14)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref9
ref4
ref3
ref5
Al-Shabi (ref29) 2011
Genovese (ref74) 2001; 22
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
Maybeck (ref8) 1979
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref65
Afshari (ref35) 2015
ref60
Gadsden (ref40); 9474
ref62
ref61
Qin (ref66)
References_xml – ident: ref19
  doi: 10.1002/0471221279
– ident: ref16
  doi: 10.1007/978-0-8176-4893-0
– ident: ref39
  doi: 10.1016/j.ifacol.2016.10.585
– ident: ref41
  doi: 10.1080/00051144.2017.1372123
– start-page: 2278
  volume-title: Proc. 31st 31st IEEE Conf. Decision Control
  ident: ref14
  article-title: H∞-optimal estimation: A tutorial
– ident: ref22
  doi: 10.1109/TII.2011.2123907
– ident: ref59
  doi: 10.1109/TIM.2020.2999165
– ident: ref17
  doi: 10.1115/1.1590682
– ident: ref57
  doi: 10.3390/en14248560
– ident: ref62
  doi: 10.1109/ICMMT.2016.7762534
– ident: ref32
  doi: 10.1109/RADAR.2016.8059444
– ident: ref31
  doi: 10.1109/ISMA.2013.6547375
– volume: 9474
  volume-title: Proc. SPIE
  ident: ref40
  article-title: Two-pass smoother based on the SVSF estimation strategy
– ident: ref15
  doi: 10.1002/0470045345
– volume: 22
  start-page: 614
  issue: 4
  year: 2001
  ident: ref74
  article-title: The interacting multiple model algorithm for accurate state estimation of maneuvering targets
  publication-title: Johns Hopkins APL Tech. Dig. (Appl. Phys. Lab.)
– ident: ref13
  doi: 10.1201/9781315221656
– ident: ref47
  doi: 10.1109/ACCESS.2019.2946609
– ident: ref1
  doi: 10.1115/1.3662552
– year: 2011
  ident: ref28
  article-title: Smooth variable structure filtering: Theory and applications
– ident: ref55
  doi: 10.1080/0952813x.2021.1908430
– ident: ref24
  doi: 10.1016/j.dsp.2020.102912
– ident: ref63
  doi: 10.1016/j.conengprac.2018.04.015
– ident: ref10
  doi: 10.1016/j.aeue.2018.10.004
– ident: ref73
  doi: 10.1115/1.2907393
– ident: ref64
  doi: 10.1155/2019/2765731
– ident: ref43
  doi: 10.2991/jrnal.2017.4.2.8
– volume: 9474
  volume-title: Proc. SPIE
  ident: ref33
  article-title: Square-root formulation of the SVSF with applications to nonlinear target tracking problems
– ident: ref23
  doi: 10.1109/TAC.1977.1101446
– ident: ref68
  doi: 10.1117/12.2519771
– ident: ref20
  doi: 10.2514/4.867200
– ident: ref70
  doi: 10.1115/1.2229259
– year: 2015
  ident: ref35
  article-title: The 2nd-order smooth variable structure filter (2nd-SVSF) for state estimation: Theory and applications
– ident: ref67
  doi: 10.1002/acs.2571
– ident: ref5
  doi: 10.1109/lsens.2020.2983706
– year: 2011
  ident: ref71
  article-title: Design and characterization of a dual electro-hydrostatic actuator
– volume: 15
  start-page: 181
  issue: 3
  year: 2014
  ident: ref27
  article-title: Robust fault diagnosis of an electro-hydrostatic actuator using the novel dynamic second-order SVSF and IMM strategy
  publication-title: Int. J. Fluid Power
– ident: ref38
  doi: 10.1109/TITS.2015.2504331
– ident: ref26
  doi: 10.1109/CCECE.2015.7129398
– year: 2011
  ident: ref29
  article-title: The general toeplitz/observability SVSF
– ident: ref65
  doi: 10.1117/12.2520018
– ident: ref34
  doi: 10.1117/1.JRS.11.015018
– ident: ref48
  doi: 10.1109/TAES.2017.2649138
– start-page: 4719
  volume-title: Proc. 32nd Chin. Control Conf.
  ident: ref66
  article-title: A nonlinear filter switch method based on normalized innovation square
– ident: ref72
  doi: 10.1016/j.rineng.2022.100785
– ident: ref2
  doi: 10.1002/9781118984987
– ident: ref36
  doi: 10.1115/DETC2015-47436
– ident: ref58
  doi: 10.1002/acs.3067
– volume: 64
  issue: 4
  volume-title: Applied Optimal Estimation
  year: 2001
  ident: ref6
– ident: ref54
  doi: 10.1109/jsyst.2019.2919792
– ident: ref25
  doi: 10.1109/IEMTRONICS51293.2020.9216381
– ident: ref44
  doi: 10.5954/ICAROB.2017.GS9-5
– ident: ref60
  doi: 10.1115/IMECE2014-36412
– ident: ref18
  doi: 10.1109/JPROC.2007.893255
– ident: ref21
  doi: 10.3389/fams.2020.585439
– ident: ref46
  doi: 10.1117/12.2262570
– ident: ref9
  doi: 10.1016/j.sigpro.2017.01.001
– ident: ref50
  doi: 10.1016/j.ifacol.2019.11.707
– ident: ref51
  doi: 10.1016/j.ifacol.2019.08.051
– ident: ref3
  doi: 10.1109/jsen.2011.2166066
– ident: ref37
  doi: 10.1016/j.sigpro.2018.09.036
– ident: ref11
  doi: 10.1109/jsen.2014.2332098
– ident: ref53
  doi: 10.1109/ssd.2015.7348201
– ident: ref45
  doi: 10.1145/3038884.3038894
– volume-title: Stochastic Models, Estimation, and Control
  year: 1979
  ident: ref8
  article-title: Stochastic models, estimation, and control—Introduction
– ident: ref12
  doi: 10.1109/jsen.2014.2388153
– ident: ref61
  doi: 10.3390/rs13224612
– ident: ref4
  doi: 10.1109/jsen.2021.3050456
– ident: ref56
  doi: 10.1109/ICoSC.2017.7958664
– issue: 4
  year: 1997
  ident: ref7
  publication-title: Introduction to Random Signals and Applied Kalman Filtering
– ident: ref52
  doi: 10.1109/urai.2018.8441876
– ident: ref49
  doi: 10.1016/j.cja.2016.02.005
– ident: ref69
  doi: 10.1115/1.4001338
– ident: ref30
  doi: 10.12928/telkomnika.v19i1.16223
– ident: ref42
  doi: 10.1109/AERO.2016.7500504
SSID ssj0019757
Score 2.4251997
Snippet State estimation strategies are vital for obtaining knowledge of a dynamic system's state when faced with limited measurement capability, sensor noise, or...
State estimation strategies are vital for obtaining knowledge of a dynamic system’s state when faced with limited measurement capability, sensor noise, or...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2905
SubjectTerms Actuators
Adaptation models
Adaptive algorithms
Adaptive estimation
Adaptive filtering
Adaptive systems
Algorithms
Boundary layers
Dynamical systems
Estimation
estimation theory
Fault detection
hydrostatic actuator
interacting multiple models (IMMs)
Kalman filter (KF)
Kalman filters
Measurement uncertainty
Noise
Noise measurement
Predictor-corrector methods
Robustness (mathematics)
Sensor phenomena and characterization
smooth variable structure filter (SVSF)
State estimation
Switches
System dynamics
Uncertainty
Title Comparison of SVSF-KF Adaptive Estimation Algorithms on an Electrohydrostatic Actuator Subject to a Fault
URI https://ieeexplore.ieee.org/document/10770130
https://www.proquest.com/docview/3155820568
Volume 25
WOSCitedRecordID wos001397848200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJiKZt2jTHRbaIyiKsyN5K2iTuwrqV3a7gv3eS1geIB28ttFBmMpn5Mv3mAzi3JjUR5klaSKkpt2WJIcU4jZUtCoP1QuxVFJ7uRb-fDofyoSWrey6MMcb_fGYu3aXv5euqXLijMoxwIVynbRmWhRANWeurZSCFH-uJEcwoj8SwbWEGTF7dDnp9hIIhv4x4HHKvsvKdhLyqyq-t2OeXbOufX7YNm20hSbqN53dgyUx3YePHeMFdWGsVzkfvezC-_hIcJJUlg6dBRu8y0tXq1W14pIeh3rAYSXfyXM3G9ehlTvBOTUmvkcoZvWtHEXEjXknX8U4QrhPceNxJDqkrokimFpN6Hx6z3uP1DW1lFmgZiKSmpZCssALzdmrQXIVmmpnE4aY4iXiqOCIOXcahtkliEV1IRImubEp4onTBogNYmVZTcwjE6X1iuhdSW8stD6TRGvESLgCrwkilHbj4NHv-2gzTyD0IYTJ3Psqdj_LWRx3Yd3b-8WBj4g6cfHoqb-NtnkdYFmEtEyfp0R-vHcN66KR7WUCD-ARW6tnCnMJq-VaP57Mzv5Q-AF6PxeM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WrtDtYeuPjGXtWj3sqaBWtmXLegwlJlvTMEgoeTOyJTWBLi6JU-h_35PstIXRh77ZYIO50-nu0_m7D-CXNamJME_SQkpNuS1LDCnGaaxsURisF2KvonAzFKNROp3Kvy1Z3XNhjDH-5zNz7i59L19X5dodlWGEC-E6bVvwMeY8DBq61nPTQAo_2BNjmFEeiWnbxAyYvPgz7o8QDIb8POJxyL3Oyksa8roq_23GPsNkX9_5bXvwpS0lSa_x_T58MIsD-PxqwOAB7LYa57PHQ5hfPksOksqS8c04o1cZ6Wl177Y80sdgb3iMpHd3Wy3n9ezfiuCdWpB-I5Yze9SOJOKGvJKeY54gYCe49bizHFJXRJFMre_qDkyy_uRyQFuhBVoGIqlpKSQrrMDMnRo0V6GZZiZxyClOIp4qjphDl3GobZJYxBcScaIrnBKeKF2w6BtsL6qF-Q7EKX5iwhdSW8stD6TRGhETLgGrwkilXTjbmD2_b8Zp5B6GMJk7H-XOR3nroy50nJ1fPdiYuAvHG0_lbcSt8ggLI6xm4iT98cZrp7A7mFwP8-Hv0dURfAqdkC8LaBAfw3a9XJufsFM-1PPV8sQvqyfV3skq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+SVSF-KF+Adaptive+Estimation+Algorithms+on+an+Electrohydrostatic+Actuator+Subject+to+a+Fault&rft.jtitle=IEEE+sensors+journal&rft.au=Goodman%2C+Jacob&rft.au=Hilal%2C+Waleed&rft.au=Gadsden%2C+Stephen+A.&rft.au=Eggleton%2C+Charles+D.&rft.date=2025-01-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=2&rft.spage=2905&rft.epage=2920&rft_id=info:doi/10.1109%2FJSEN.2024.3452488&rft.externalDocID=10770130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon