A small-object segmentation algorithm for intercluster imbalance based on histogram- and stickiness-aware boosting

Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segme...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 163; p. 113045
Main Authors: Chong, Qianpeng, Wen, Jiakun, Wan, Qianhui, Zeng, Wenyi, Yin, Qian, Cheng, Dong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2026
Subjects:
ISSN:0952-1976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segmentation FCM algorithm for intercluster imbalance based on histograms and stickiness-aware boosting. This algorithm has three main parts: (1) histogram boosting of images, achieved by introducing histogram boosting factors to balance the contributions of different grayscale samples; (2) boosting factor selection, guided by connectivity region information and separation distances; and (3) FCM clustering and image segmentation based on the selected boosting factor. The separation distances are innovatively combined with absolute distances, relative distances, and stickiness of pixels to clusters. This approach allows the state where the sum of the separation distances is minimized to effectively represent the exact state of the small-object segmentation. The experimental results show that the proposed algorithm has the characteristics of high accuracy, fast speed, and good stability in small-object detection. In some challenging scenarios and when the target categories are unbalanced, the segmentation accuracy of the proposed algorithm reaches 99.07%, whereas the normalized mutual information, F1 score, and mean intersection over union reach 97.65%, 95.47%, and 90.31%, respectively. Our resource code can be accessed at https://github.com/wenxiaomo/HBFCM.
AbstractList Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segmentation FCM algorithm for intercluster imbalance based on histograms and stickiness-aware boosting. This algorithm has three main parts: (1) histogram boosting of images, achieved by introducing histogram boosting factors to balance the contributions of different grayscale samples; (2) boosting factor selection, guided by connectivity region information and separation distances; and (3) FCM clustering and image segmentation based on the selected boosting factor. The separation distances are innovatively combined with absolute distances, relative distances, and stickiness of pixels to clusters. This approach allows the state where the sum of the separation distances is minimized to effectively represent the exact state of the small-object segmentation. The experimental results show that the proposed algorithm has the characteristics of high accuracy, fast speed, and good stability in small-object detection. In some challenging scenarios and when the target categories are unbalanced, the segmentation accuracy of the proposed algorithm reaches 99.07%, whereas the normalized mutual information, F1 score, and mean intersection over union reach 97.65%, 95.47%, and 90.31%, respectively. Our resource code can be accessed at https://github.com/wenxiaomo/HBFCM.
ArticleNumber 113045
Author Zeng, Wenyi
Chong, Qianpeng
Wan, Qianhui
Yin, Qian
Cheng, Dong
Wen, Jiakun
Author_xml – sequence: 1
  givenname: Qianpeng
  surname: Chong
  fullname: Chong, Qianpeng
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Jiakun
  surname: Wen
  fullname: Wen, Jiakun
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Qianhui
  surname: Wan
  fullname: Wan, Qianhui
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 4
  givenname: Wenyi
  surname: Zeng
  fullname: Zeng, Wenyi
  email: zengwy@bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 5
  givenname: Qian
  orcidid: 0000-0002-0354-5490
  surname: Yin
  fullname: Yin, Qian
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 6
  givenname: Dong
  surname: Cheng
  fullname: Cheng, Dong
  organization: Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMHOj93cqCr-pEpc4Gxt7E3qkNiVbUC8PakKZ04jjWZGu9-KLJx3SMgNZzlnXNwOOboejkewecGKOue8ZFW9IEvW1EXGGykuySrGgTFWbiqxJGFL4wTjmPl2QJ1oxH5ClyBZ7yiMvQ82HSba-UCtSxj0-BFnoXZqYQSnkbYQ0dA5fbAx-T7AlFFwhsZk9bt1GGMGXxDmoPez5_orctHBGPH6V9fk7eH-dfeU7V8en3fbfaa5FCnjmhvRaqhqEC3foJTQssbopgBZmUoaWUCBndQNioYX0AlZcllxbIWQujTlmojzrg4-xoCdOgY7QfhWnKkTLTWoP1rqREudac3Fu3MR5-s-LQYVtcX5V2PDzEgZb_-b-AHxGH28
Cites_doi 10.1109/CVPR52688.2022.02084
10.1109/ACCESS.2024.3374073
10.1016/j.patcog.2013.11.031
10.1109/ICIP51287.2024.10647414
10.1016/j.procs.2015.06.090
10.1109/TFUZZ.2018.2796074
10.1109/TFUZZ.2010.2087382
10.1016/j.knosys.2021.107432
10.1109/TSMCB.2004.831165
10.1093/mnras/stac2438
10.1109/ACCESS.2024.3525065
10.1016/j.asoc.2025.113052
10.1109/3477.764879
10.1109/CVPR.2017.404
10.1109/ICSMC.1998.728197
10.1109/TIP.2012.2219547
10.1109/ACCESS.2025.3542989
10.1109/TPAMI.2010.161
10.1016/0031-3203(95)00120-4
10.1016/j.dsp.2009.11.007
10.1016/j.asoc.2010.05.005
10.1109/TFUZZ.2019.2930030
10.1016/j.cmpb.2020.105317
10.1007/s10462-024-11057-x
10.1109/TIP.2010.2040763
10.1016/j.ins.2025.122639
10.1109/TFUZZ.2024.3405497
10.1007/s12145-023-01129-x
10.1109/TPAMI.2016.2644615
10.1080/01969727308546046
10.1049/iet-ipr.2019.0253
10.1109/CVPR52729.2023.01083
10.1109/42.996338
10.1016/j.eswa.2020.113856
10.1109/IranianMVIP.2011.6121573
10.1109/TFUZZ.2022.3220925
10.1016/0098-3004(84)90020-7
10.1016/j.patcog.2010.07.013
10.1109/34.192473
10.1007/s10462-024-11035-3
10.1016/S0169-7439(02)00052-7
10.1109/ACCESS.2025.3552581
10.1109/ACCESS.2020.3005452
10.1016/j.ins.2022.08.082
10.1109/TFUZZ.2019.2945232
10.1109/TFUZZ.2018.2889018
10.1109/CVPRW63382.2024.00806
10.1016/j.isprsjprs.2014.08.006
10.1002/ima.23179
10.1016/j.eswa.2021.115637
10.1016/j.compbiomed.2025.110716
10.1016/j.asoc.2015.12.022
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.113045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_113045
S0952197625030763
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c176t-1c1d6bca45a6b18e77ab09dc92a74d47d72a2ef7c9e6912af6731741eb667c3d3
ISSN 0952-1976
IngestDate Thu Nov 27 01:03:00 EST 2025
Sat Nov 29 17:15:22 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Image segmentation
Unequal clusters
Fuzzy C-means algorithm
Small-object detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c176t-1c1d6bca45a6b18e77ab09dc92a74d47d72a2ef7c9e6912af6731741eb667c3d3
ORCID 0000-0002-0354-5490
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_113045
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_113045
PublicationCentury 2000
PublicationDate 2026-01-01
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cui, Wang, Zeng, Liu, Zhao (b16) 2025; 58
Ghaffarian, Ghaffarian (b24) 2014; 97
Gao, Yang, Lin, Pan, Li (b22) 2020; 14
Wang, Lijun, Lu, Huchuan, Wang, Yifan, Feng, Mengyang, Wang, Dong, Yin, Baocai, Ruan, Xiang, 2017. Learning to Detect Salient Objects with Image-Level Supervision. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3796–3805.
Wang, Zheng, Ma, Lu, Zhong (b51) 2021
Zeng, Liu, Cui, Ma, Xu (b58) 2022; 612
He, Ju, Chen, Jieneng, Lin, Ming-Xian, Yu, Qihang, Yuille, Alan L., 2023. Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11259–11268.
Tan, Isa (b47) 2011; 44
Zheng, Jeon, Xu, Wu, Zhang (b60) 2015; 28
Bezdek, Ehrlich, Full (b6) 1984; 10
Chen, Zhang (b10) 2004; 34
Chikhaoui, Khalil, Alfarraj, Motaz, 2024. Advancing Colorectal Polyp Segmentation With Watershed Algorithm-Enhanced Parallel Self-Supervised Learning. In: IEEE International Conference on Image Processing. ICIP, pp. 3124–3130.
Yin, Li, Zheng, Li, Cui, Bao (b56) 2022; 516
Singh, Bose (b43) 2021; 185
Krinidis, Chatzis (b28) 2010; 19
Yan, Zhang, Yang, Tang (b54) 2021; 9
Singh (b42) 2020; 189
Lei, Jia, Zhang, He, Meng, Nandi (b30) 2018; 26
Chaira (b8) 2011; 11
Noordam, Van Den Broek, Buydens (b37) 2002; 64
Lin, Huang, Kuo, Lai (b33) 2014; 47
Lei, Jia, Zhang, Liu, Meng, Nandi (b31) 2018; 27
Zhang, Li, Zhang, Nie (b59) 2020; 28
Verma, Agrawal, Sharan (b48) 2016; 46
Gong, Liang, Shi, Ma, Ma (b25) 2012; 22
Chong, Ma, Xu, Wei, Long, Zeng, Cheng (b15) 2025; 721
Song, Jia, Yang, Kasabov (b45) 2023; 31
Badrinarayanan, Kendall, Cipolla (b4) 2017; 39
Cheng, Zhou, Li, Zhang, Yang (b11) 2025; 174
Lei, Liu, Jia, Zhang, Meng, Nandi (b32) 2020; 28
Bensaid, Hall, Bezdek, Clarke (b5) 1996; 29
Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H., 2003. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1, pp. 724–726.
Singh, Bose (b44) 2021; 231
Yang, Zhang, Lu, Ma (b55) 2010; 19
Yu, Xie, Fan, Lan, Lei (b57) 2024; 32
Askari (b3) 2021; 165
Rosi, Gabriele, Cuttano, Claudia, Cavagnero, Niccolò, Averta, Giuseppe, Cermelli, Fabio, 2024. The Revenge of BiSeNet: Efficient Multi-Task Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 8066–8074.
Xu, Cao, Lu (b53) 2025; 13
Naous, Tarek, Sarkar, Srinjay, Abid, Abubakar, Zou, James, 2022. Clustering Plotted Data by Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 21467–21472.
Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L., 2015. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In: 3rd International Conference on Learning Representations. ICLR.
Arbeláez, Maire, Fowlkes, Malik (b2) 2010; 33
Dhanachandra, Manglem, Chanu (b17) 2015; 54
Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21
Jia, Su, Rao, Liang, Abualigah, Liu, Chen (b27) 2025; 58
Filipiak, Zapala, Tempczyk, Fensel, Cygan (b21) 2024; 12
Wang, Bu (b49) 2010; 20
Dunn (b20) 1973; 3
Roy, Gupta, Goswami (b41) 2024; 34
Moradi, Ghobad, Shamsi, Mousa, Seda Aghi, Mohammad Hossein, Moradi, Setareh, 2011. Apple Defect Detection Using Statistical Histogram Based Fuzzy C-Means Algorithm. In: 2011 7th Iranian Conference on Machine Vision and Image Processing. pp. 1–6.
Dong (b19) 2021; 17
Xia, Hu, Hu, Shi, Bai, Zhong, Zhang (b52) 2016
Moghanloo, Riahi (b34) 2023; 16
Chintalapudi, K. K., Kam, Moshe, 1998. The Credibilistic Fuzzy C-Means Clustering Algorithm. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 2, pp. 2034–2039.
Ronneberger (b39) 2017
Perera, Navard, Yilmaz (b38) 2024
Chai, Xiao, Shen, Liu, Li, Guan, Tian (b7) 2025; 13
Krishna, Murty (b29) 1999; 29
Chikkala, Anuradha, Chandra Murty, Rajeswari, Rajeswaran, Murugappan, Chowdhury (b13) 2025; 13
Dialameh, Rajabzadeh, Sadeghi-Goughari, Sim, Kwon (b18) 2025; 196
Gath, Geva (b23) 1989; 11
Ahmed (10.1016/j.engappai.2025.113045_b1) 2002; 21
Cui (10.1016/j.engappai.2025.113045_b16) 2025; 58
Askari (10.1016/j.engappai.2025.113045_b3) 2021; 165
Perera (10.1016/j.engappai.2025.113045_b38) 2024
10.1016/j.engappai.2025.113045_b14
Moghanloo (10.1016/j.engappai.2025.113045_b34) 2023; 16
Bensaid (10.1016/j.engappai.2025.113045_b5) 1996; 29
10.1016/j.engappai.2025.113045_b12
Krishna (10.1016/j.engappai.2025.113045_b29) 1999; 29
10.1016/j.engappai.2025.113045_b50
Singh (10.1016/j.engappai.2025.113045_b44) 2021; 231
Song (10.1016/j.engappai.2025.113045_b45) 2023; 31
Chong (10.1016/j.engappai.2025.113045_b15) 2025; 721
Yin (10.1016/j.engappai.2025.113045_b56) 2022; 516
Dhanachandra (10.1016/j.engappai.2025.113045_b17) 2015; 54
Gao (10.1016/j.engappai.2025.113045_b22) 2020; 14
Ghaffarian (10.1016/j.engappai.2025.113045_b24) 2014; 97
Roy (10.1016/j.engappai.2025.113045_b41) 2024; 34
Filipiak (10.1016/j.engappai.2025.113045_b21) 2024; 12
Chaira (10.1016/j.engappai.2025.113045_b8) 2011; 11
Lin (10.1016/j.engappai.2025.113045_b33) 2014; 47
Verma (10.1016/j.engappai.2025.113045_b48) 2016; 46
10.1016/j.engappai.2025.113045_b9
Chen (10.1016/j.engappai.2025.113045_b10) 2004; 34
Dong (10.1016/j.engappai.2025.113045_b19) 2021; 17
Jia (10.1016/j.engappai.2025.113045_b27) 2025; 58
Noordam (10.1016/j.engappai.2025.113045_b37) 2002; 64
Xu (10.1016/j.engappai.2025.113045_b53) 2025; 13
10.1016/j.engappai.2025.113045_b46
Dialameh (10.1016/j.engappai.2025.113045_b18) 2025; 196
10.1016/j.engappai.2025.113045_b40
Lei (10.1016/j.engappai.2025.113045_b31) 2018; 27
Singh (10.1016/j.engappai.2025.113045_b42) 2020; 189
Xia (10.1016/j.engappai.2025.113045_b52) 2016
Gath (10.1016/j.engappai.2025.113045_b23) 1989; 11
Lei (10.1016/j.engappai.2025.113045_b32) 2020; 28
10.1016/j.engappai.2025.113045_b36
10.1016/j.engappai.2025.113045_b35
Zeng (10.1016/j.engappai.2025.113045_b58) 2022; 612
Wang (10.1016/j.engappai.2025.113045_b51) 2021
Arbeláez (10.1016/j.engappai.2025.113045_b2) 2010; 33
Zhang (10.1016/j.engappai.2025.113045_b59) 2020; 28
Yu (10.1016/j.engappai.2025.113045_b57) 2024; 32
Yan (10.1016/j.engappai.2025.113045_b54) 2021; 9
Chikkala (10.1016/j.engappai.2025.113045_b13) 2025; 13
Singh (10.1016/j.engappai.2025.113045_b43) 2021; 185
Tan (10.1016/j.engappai.2025.113045_b47) 2011; 44
Krinidis (10.1016/j.engappai.2025.113045_b28) 2010; 19
Lei (10.1016/j.engappai.2025.113045_b30) 2018; 26
Badrinarayanan (10.1016/j.engappai.2025.113045_b4) 2017; 39
Bezdek (10.1016/j.engappai.2025.113045_b6) 1984; 10
Cheng (10.1016/j.engappai.2025.113045_b11) 2025; 174
Dunn (10.1016/j.engappai.2025.113045_b20) 1973; 3
Gong (10.1016/j.engappai.2025.113045_b25) 2012; 22
10.1016/j.engappai.2025.113045_b26
Yang (10.1016/j.engappai.2025.113045_b55) 2010; 19
Wang (10.1016/j.engappai.2025.113045_b49) 2010; 20
Chai (10.1016/j.engappai.2025.113045_b7) 2025; 13
Ronneberger (10.1016/j.engappai.2025.113045_b39) 2017
Zheng (10.1016/j.engappai.2025.113045_b60) 2015; 28
References_xml – volume: 29
  start-page: 433
  year: 1999
  end-page: 439
  ident: b29
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 29
  start-page: 859
  year: 1996
  end-page: 871
  ident: b5
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognit.
– volume: 14
  start-page: 2343
  year: 2020
  end-page: 2355
  ident: b22
  article-title: Conditional semi-fuzzy C-means clustering for imbalanced dataset
  publication-title: IET Image Process.
– volume: 16
  start-page: 3913
  year: 2023
  end-page: 3930
  ident: b34
  article-title: Integrating watershed segmentation algorithm and supervised Bayesian classification for the assessment of petrophysical parameters, pore properties, and lithofacies: a case study from Abadan Plain, SW Iran
  publication-title: Earth Sci. Inform.
– reference: Rosi, Gabriele, Cuttano, Claudia, Cavagnero, Niccolò, Averta, Giuseppe, Cermelli, Fabio, 2024. The Revenge of BiSeNet: Efficient Multi-Task Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 8066–8074.
– volume: 721
  year: 2025
  ident: b15
  article-title: Spatial-frequency collaborative feature constraint based on interval type-2 fuzzy set and wavelet transform for high-resolution remote sensing image segmentation
  publication-title: Inform. Sci.
– volume: 58
  start-page: 55
  year: 2025
  ident: b27
  article-title: Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation
  publication-title: Artif. Intell. Rev.
– volume: 174
  year: 2025
  ident: b11
  article-title: A morphological difference and statistically sparse transformer-based deep neural network for medical image segmentation
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 2078
  year: 2020
  end-page: 2092
  ident: b32
  article-title: Automatic fuzzy clustering framework for image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: Wang, Lijun, Lu, Huchuan, Wang, Yifan, Feng, Mengyang, Wang, Dong, Yin, Baocai, Ruan, Xiang, 2017. Learning to Detect Salient Objects with Image-Level Supervision. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3796–3805.
– volume: 19
  start-page: 105
  year: 2010
  end-page: 115
  ident: b55
  article-title: A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 3
  year: 2017
  ident: b39
  article-title: Invited talk: U-Net convolutional networks for biomedical image segmentation
  publication-title: Bildverarbeitung FÜr Die Medizin 2017 - Algorithmen - Systeme - Anwendungen, Proceedings Des Workshops
– reference: Naous, Tarek, Sarkar, Srinjay, Abid, Abubakar, Zou, James, 2022. Clustering Plotted Data by Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 21467–21472.
– volume: 11
  start-page: 773
  year: 1989
  end-page: 780
  ident: b23
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 97
  start-page: 46
  year: 2014
  end-page: 57
  ident: b24
  article-title: Automatic histogram-based fuzzy C-means clustering for remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b4
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  year: 2024
  ident: b41
  article-title: Revolutionizing colon histopathology glandular segmentation using an ensemble network with Watershed Algorithm
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 22
  start-page: 573
  year: 2012
  end-page: 584
  ident: b25
  article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 28
  start-page: 961
  year: 2015
  end-page: 973
  ident: b60
  article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm
  publication-title: J. Intell. Fuzzy Systems
– volume: 44
  start-page: 1
  year: 2011
  end-page: 15
  ident: b47
  article-title: Color image segmentation using histogram thresholding–fuzzy C-means hybrid approach
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 33
  start-page: 898
  year: 2010
  end-page: 916
  ident: b2
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 892
  year: 2021
  end-page: 904
  ident: b19
  article-title: Image semantic segmentation using improved ENet network
  publication-title: J. Inf. Process. Syst.
– volume: 12
  start-page: 37744
  year: 2024
  end-page: 37756
  ident: b21
  article-title: Polite teacher: Semi-supervised instance segmentation with mutual learning and pseudo-label thresholding
  publication-title: IEEE Access
– reference: Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L., 2015. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In: 3rd International Conference on Learning Representations. ICLR.
– volume: 31
  start-page: 2153
  year: 2023
  end-page: 2166
  ident: b45
  article-title: Image segmentation based on fuzzy low-rank structural clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 13
  start-page: 41682
  year: 2025
  end-page: 41707
  ident: b13
  article-title: Enhancing breast cancer diagnosis with bidirectional recurrent neural networks: A novel approach for histopathological image multi-classification
  publication-title: IEEE Access
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b20
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– reference: Chintalapudi, K. K., Kam, Moshe, 1998. The Credibilistic Fuzzy C-Means Clustering Algorithm. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 2, pp. 2034–2039.
– year: 2021
  ident: b51
  article-title: Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation
  publication-title: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, Virtual
– volume: 185
  year: 2021
  ident: b43
  article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation
  publication-title: Expert Syst. Appl.
– volume: 516
  start-page: 3082
  year: 2022
  end-page: 3091
  ident: b56
  article-title: Pulsar candidate selection with residual convolutional autoencoder
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 196
  year: 2025
  ident: b18
  article-title: Dualswinunet++: An enhanced swin-unet architecture with dual decoders for PTMC segmentation
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b6
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– reference: Chikhaoui, Khalil, Alfarraj, Motaz, 2024. Advancing Colorectal Polyp Segmentation With Watershed Algorithm-Enhanced Parallel Self-Supervised Learning. In: IEEE International Conference on Image Processing. ICIP, pp. 3124–3130.
– reference: Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H., 2003. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1, pp. 724–726.
– volume: 189
  year: 2020
  ident: b42
  article-title: A neutrosophic-entropy based clustering algorithm (NECCA) with hsv color system: A special application in segmentation of Parkinson’s disease (PD) MR images
  publication-title: Comput. Methods Programs Biomed.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 1173
  year: 2010
  end-page: 1182
  ident: b49
  article-title: A fast and robust image segmentation using FCM with spatial information
  publication-title: Digit. Signal Process.
– reference: He, Ju, Chen, Jieneng, Lin, Ming-Xian, Yu, Qihang, Yuille, Alan L., 2023. Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11259–11268.
– volume: 58
  start-page: 56
  year: 2025
  ident: b16
  article-title: Possibilistic C-means with novel image representation for image segmentation
  publication-title: Artif. Intell. Rev.
– volume: 13
  start-page: 55877
  year: 2025
  end-page: 55886
  ident: b53
  article-title: Improved u-net++ semantic segmentation method for remote sensing images
  publication-title: IEEE Access
– volume: 612
  start-page: 465
  year: 2022
  end-page: 480
  ident: b58
  article-title: Interval possibilistic C-means algorithm and its application in image segmentation
  publication-title: Inform. Sci.
– volume: 28
  start-page: 2814
  year: 2020
  end-page: 2824
  ident: b59
  article-title: Deep fuzzy K-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 1711
  year: 2011
  end-page: 1717
  ident: b8
  article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images
  publication-title: Appl. Soft Comput.
– volume: 64
  start-page: 65
  year: 2002
  end-page: 78
  ident: b37
  article-title: Multivariate image segmentation with cluster size insensitive fuzzy C-means
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 47
  start-page: 2042
  year: 2014
  end-page: 2056
  ident: b33
  article-title: A size-insensitive integrity-based fuzzy C-means method for data clustering
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 4595
  year: 2024
  end-page: 4609
  ident: b57
  article-title: Mahalanobis-Kernel distance-based suppressed possibilistic C-means clustering algorithm for imbalanced image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 4981
  year: 2024
  end-page: 4988
  ident: b38
  article-title: SegFormer3D: an efficient transformer for 3D medical image segmentation
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Workshops, Seattle, WA, USA, June 17-18, 2024
– volume: 54
  start-page: 764
  year: 2015
  end-page: 771
  ident: b17
  article-title: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm
  publication-title: Procedia Comput. Sci.
– volume: 27
  start-page: 1753
  year: 2018
  end-page: 1766
  ident: b31
  article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2016
  ident: b52
  article-title: AID: A benchmark dataset for performance evaluation of aerial scene classification
– volume: 165
  year: 2021
  ident: b3
  article-title: Fuzzy C-means clustering Algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 3027
  year: 2018
  end-page: 3041
  ident: b30
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 46
  start-page: 543
  year: 2016
  end-page: 557
  ident: b48
  article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 6277
  year: 2025
  end-page: 6291
  ident: b7
  article-title: Transdeep: Transformer-integrated DeepLabV3+ for image semantic segmentation
  publication-title: IEEE Access
– volume: 231
  year: 2021
  ident: b44
  article-title: Ambiguous d-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of ct scan images of covid-19
  publication-title: Knowl.-Based Syst.
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b28
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 41294
  year: 2021
  end-page: 41319
  ident: b54
  article-title: Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm
  publication-title: IEEE Access
– reference: Moradi, Ghobad, Shamsi, Mousa, Seda Aghi, Mohammad Hossein, Moradi, Setareh, 2011. Apple Defect Detection Using Statistical Histogram Based Fuzzy C-Means Algorithm. In: 2011 7th Iranian Conference on Machine Vision and Image Processing. pp. 1–6.
– ident: 10.1016/j.engappai.2025.113045_b36
  doi: 10.1109/CVPR52688.2022.02084
– volume: 12
  start-page: 37744
  year: 2024
  ident: 10.1016/j.engappai.2025.113045_b21
  article-title: Polite teacher: Semi-supervised instance segmentation with mutual learning and pseudo-label thresholding
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3374073
– volume: 47
  start-page: 2042
  issue: 5
  year: 2014
  ident: 10.1016/j.engappai.2025.113045_b33
  article-title: A size-insensitive integrity-based fuzzy C-means method for data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.031
– ident: 10.1016/j.engappai.2025.113045_b12
  doi: 10.1109/ICIP51287.2024.10647414
– volume: 54
  start-page: 764
  year: 2015
  ident: 10.1016/j.engappai.2025.113045_b17
  article-title: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.090
– volume: 26
  start-page: 3027
  issue: 5
  year: 2018
  ident: 10.1016/j.engappai.2025.113045_b30
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2796074
– volume: 19
  start-page: 105
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2025.113045_b55
  article-title: A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2087382
– volume: 231
  year: 2021
  ident: 10.1016/j.engappai.2025.113045_b44
  article-title: Ambiguous d-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of ct scan images of covid-19
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107432
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  ident: 10.1016/j.engappai.2025.113045_b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2004.831165
– volume: 516
  start-page: 3082
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2025.113045_b56
  article-title: Pulsar candidate selection with residual convolutional autoencoder
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stac2438
– volume: 13
  start-page: 6277
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b7
  article-title: Transdeep: Transformer-integrated DeepLabV3+ for image semantic segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3525065
– volume: 174
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b11
  article-title: A morphological difference and statistically sparse transformer-based deep neural network for medical image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2025.113052
– volume: 29
  start-page: 433
  issue: 3
  year: 1999
  ident: 10.1016/j.engappai.2025.113045_b29
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.764879
– ident: 10.1016/j.engappai.2025.113045_b50
  doi: 10.1109/CVPR.2017.404
– ident: 10.1016/j.engappai.2025.113045_b14
  doi: 10.1109/ICSMC.1998.728197
– volume: 22
  start-page: 573
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2025.113045_b25
  article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2219547
– volume: 13
  start-page: 41682
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b13
  article-title: Enhancing breast cancer diagnosis with bidirectional recurrent neural networks: A novel approach for histopathological image multi-classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3542989
– volume: 33
  start-page: 898
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2025.113045_b2
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– ident: 10.1016/j.engappai.2025.113045_b46
– volume: 29
  start-page: 859
  issue: 5
  year: 1996
  ident: 10.1016/j.engappai.2025.113045_b5
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00120-4
– volume: 20
  start-page: 1173
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2025.113045_b49
  article-title: A fast and robust image segmentation using FCM with spatial information
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.11.007
– volume: 11
  start-page: 1711
  issue: 2
  year: 2011
  ident: 10.1016/j.engappai.2025.113045_b8
  article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.005
– volume: 28
  start-page: 2078
  issue: 9
  year: 2020
  ident: 10.1016/j.engappai.2025.113045_b32
  article-title: Automatic fuzzy clustering framework for image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2930030
– volume: 189
  year: 2020
  ident: 10.1016/j.engappai.2025.113045_b42
  article-title: A neutrosophic-entropy based clustering algorithm (NECCA) with hsv color system: A special application in segmentation of Parkinson’s disease (PD) MR images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105317
– volume: 58
  start-page: 56
  issue: 2
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b16
  article-title: Possibilistic C-means with novel image representation for image segmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-11057-x
– year: 2021
  ident: 10.1016/j.engappai.2025.113045_b51
  article-title: Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2025.113045_b28
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 721
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b15
  article-title: Spatial-frequency collaborative feature constraint based on interval type-2 fuzzy set and wavelet transform for high-resolution remote sensing image segmentation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2025.122639
– volume: 32
  start-page: 4595
  issue: 8
  year: 2024
  ident: 10.1016/j.engappai.2025.113045_b57
  article-title: Mahalanobis-Kernel distance-based suppressed possibilistic C-means clustering algorithm for imbalanced image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2024.3405497
– volume: 16
  start-page: 3913
  issue: 4
  year: 2023
  ident: 10.1016/j.engappai.2025.113045_b34
  article-title: Integrating watershed segmentation algorithm and supervised Bayesian classification for the assessment of petrophysical parameters, pore properties, and lithofacies: a case study from Abadan Plain, SW Iran
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-023-01129-x
– year: 2016
  ident: 10.1016/j.engappai.2025.113045_b52
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.engappai.2025.113045_b4
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.engappai.2025.113045_b20
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 14
  start-page: 2343
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2025.113045_b22
  article-title: Conditional semi-fuzzy C-means clustering for imbalanced dataset
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0253
– ident: 10.1016/j.engappai.2025.113045_b26
  doi: 10.1109/CVPR52729.2023.01083
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.engappai.2025.113045_b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– start-page: 4981
  year: 2024
  ident: 10.1016/j.engappai.2025.113045_b38
  article-title: SegFormer3D: an efficient transformer for 3D medical image segmentation
– volume: 165
  year: 2021
  ident: 10.1016/j.engappai.2025.113045_b3
  article-title: Fuzzy C-means clustering Algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113856
– ident: 10.1016/j.engappai.2025.113045_b35
  doi: 10.1109/IranianMVIP.2011.6121573
– volume: 31
  start-page: 2153
  issue: 7
  year: 2023
  ident: 10.1016/j.engappai.2025.113045_b45
  article-title: Image segmentation based on fuzzy low-rank structural clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2022.3220925
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.engappai.2025.113045_b6
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– start-page: 3
  year: 2017
  ident: 10.1016/j.engappai.2025.113045_b39
  article-title: Invited talk: U-Net convolutional networks for biomedical image segmentation
– volume: 44
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2025.113045_b47
  article-title: Color image segmentation using histogram thresholding–fuzzy C-means hybrid approach
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.07.013
– volume: 11
  start-page: 773
  issue: 7
  year: 1989
  ident: 10.1016/j.engappai.2025.113045_b23
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192473
– volume: 17
  start-page: 892
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2025.113045_b19
  article-title: Image semantic segmentation using improved ENet network
  publication-title: J. Inf. Process. Syst.
– volume: 58
  start-page: 55
  issue: 2
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b27
  article-title: Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-11035-3
– volume: 64
  start-page: 65
  issue: 1
  year: 2002
  ident: 10.1016/j.engappai.2025.113045_b37
  article-title: Multivariate image segmentation with cluster size insensitive fuzzy C-means
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00052-7
– volume: 13
  start-page: 55877
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b53
  article-title: Improved u-net++ semantic segmentation method for remote sensing images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3552581
– volume: 9
  start-page: 41294
  year: 2021
  ident: 10.1016/j.engappai.2025.113045_b54
  article-title: Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005452
– volume: 612
  start-page: 465
  year: 2022
  ident: 10.1016/j.engappai.2025.113045_b58
  article-title: Interval possibilistic C-means algorithm and its application in image segmentation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.08.082
– volume: 28
  start-page: 2814
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2025.113045_b59
  article-title: Deep fuzzy K-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2945232
– ident: 10.1016/j.engappai.2025.113045_b9
– volume: 27
  start-page: 1753
  issue: 9
  year: 2018
  ident: 10.1016/j.engappai.2025.113045_b31
  article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2889018
– ident: 10.1016/j.engappai.2025.113045_b40
  doi: 10.1109/CVPRW63382.2024.00806
– volume: 28
  start-page: 961
  issue: 2
  year: 2015
  ident: 10.1016/j.engappai.2025.113045_b60
  article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm
  publication-title: J. Intell. Fuzzy Systems
– volume: 97
  start-page: 46
  year: 2014
  ident: 10.1016/j.engappai.2025.113045_b24
  article-title: Automatic histogram-based fuzzy C-means clustering for remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.006
– volume: 34
  issue: 5
  year: 2024
  ident: 10.1016/j.engappai.2025.113045_b41
  article-title: Revolutionizing colon histopathology glandular segmentation using an ensemble network with Watershed Algorithm
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.23179
– volume: 185
  year: 2021
  ident: 10.1016/j.engappai.2025.113045_b43
  article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115637
– volume: 196
  year: 2025
  ident: 10.1016/j.engappai.2025.113045_b18
  article-title: Dualswinunet++: An enhanced swin-unet architecture with dual decoders for PTMC segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2025.110716
– volume: 46
  start-page: 543
  year: 2016
  ident: 10.1016/j.engappai.2025.113045_b48
  article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
SSID ssj0003846
Score 2.4445717
Snippet Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113045
SubjectTerms Fuzzy C-means algorithm
Image segmentation
Small-object detection
Unequal clusters
Title A small-object segmentation algorithm for intercluster imbalance based on histogram- and stickiness-aware boosting
URI https://dx.doi.org/10.1016/j.engappai.2025.113045
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlJR-4RS51HnZ8XKEi4FCBKGJvkeM4bdpsdpVk-_gT_GbGcZxESyVAiEu0suLxbuZbezLzzQxCb3TIAjhJQhLFqSahporInFOSx3keSWoCR7bZBD8-jhcL8Xk2--FyYS5LXlXx9bVY_1dVwxgo26TO_oW6B6EwAJ9B6XAFtcP1jxQ_95qlLEuySo2LxWv06bLPL6o8WZ6u6qI9W3bsQlMqolblxtRK8IplaliO8Dc3B1tmgghdLWLD3iJdiMFUdL7oWPJEXhnCGBjoTeuOPufdH-sbetPgeMc3qDtiUtcmZFIJdGQY9PTgLwDZte7ldlEjm0BSyIvNgOXv1nNr7j3bFIP_W1sRMOWmmHo0_G2PxpBqM_KarL_SJ1TYZjHD1m03x1-OAeuROD-ANeGnyuIAlolM-5pDW7tyq8T2VyPcyAZ7EPY8FtxBuz6PBOySu_OPR4tPw9kexDb1y32ZSc757avdbu5MTJiTh-h-_-6B5xYzj9BMV4_Rg_49BPe7fANDrtWHG3uC6jmeogpPUYUHVGFAFZ6iCg-owh2qMNw9ogoDqvA2qrBD1VP07f3RybsPpG_XQRTlrCVU0YylSoaRZCmNNecyPRSZEr7kYRbyjPvS1zlXQjNBfZkzDsZrSHXKGFdBFjxDO9Wq0nsIUyZ8DfNiJuIw40KmPAeBikmRpSoU--ite6rJ2lZlSRxd8TxxekiMHhKrh30k3MNPetvS2owJYOY3c5__w9wX6N4I8Zdop603-hW6qy7boqlf9_D6CWPvqeo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+small-object+segmentation+algorithm+for+intercluster+imbalance+based+on+histogram-+and+stickiness-aware+boosting&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chong%2C+Qianpeng&rft.au=Wen%2C+Jiakun&rft.au=Wan%2C+Qianhui&rft.au=Zeng%2C+Wenyi&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=163&rft_id=info:doi/10.1016%2Fj.engappai.2025.113045&rft.externalDocID=S0952197625030763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon