A small-object segmentation algorithm for intercluster imbalance based on histogram- and stickiness-aware boosting
Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segme...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 163; p. 113045 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.01.2026
|
| Subjects: | |
| ISSN: | 0952-1976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segmentation FCM algorithm for intercluster imbalance based on histograms and stickiness-aware boosting. This algorithm has three main parts: (1) histogram boosting of images, achieved by introducing histogram boosting factors to balance the contributions of different grayscale samples; (2) boosting factor selection, guided by connectivity region information and separation distances; and (3) FCM clustering and image segmentation based on the selected boosting factor. The separation distances are innovatively combined with absolute distances, relative distances, and stickiness of pixels to clusters. This approach allows the state where the sum of the separation distances is minimized to effectively represent the exact state of the small-object segmentation. The experimental results show that the proposed algorithm has the characteristics of high accuracy, fast speed, and good stability in small-object detection. In some challenging scenarios and when the target categories are unbalanced, the segmentation accuracy of the proposed algorithm reaches 99.07%, whereas the normalized mutual information, F1 score, and mean intersection over union reach 97.65%, 95.47%, and 90.31%, respectively. Our resource code can be accessed at https://github.com/wenxiaomo/HBFCM. |
|---|---|
| AbstractList | Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform poorly in the face of unbalanced datasets, and are sensitive to the initial position. Therefore, in this paper, we propose a small-object segmentation FCM algorithm for intercluster imbalance based on histograms and stickiness-aware boosting. This algorithm has three main parts: (1) histogram boosting of images, achieved by introducing histogram boosting factors to balance the contributions of different grayscale samples; (2) boosting factor selection, guided by connectivity region information and separation distances; and (3) FCM clustering and image segmentation based on the selected boosting factor. The separation distances are innovatively combined with absolute distances, relative distances, and stickiness of pixels to clusters. This approach allows the state where the sum of the separation distances is minimized to effectively represent the exact state of the small-object segmentation. The experimental results show that the proposed algorithm has the characteristics of high accuracy, fast speed, and good stability in small-object detection. In some challenging scenarios and when the target categories are unbalanced, the segmentation accuracy of the proposed algorithm reaches 99.07%, whereas the normalized mutual information, F1 score, and mean intersection over union reach 97.65%, 95.47%, and 90.31%, respectively. Our resource code can be accessed at https://github.com/wenxiaomo/HBFCM. |
| ArticleNumber | 113045 |
| Author | Zeng, Wenyi Chong, Qianpeng Wan, Qianhui Yin, Qian Cheng, Dong Wen, Jiakun |
| Author_xml | – sequence: 1 givenname: Qianpeng surname: Chong fullname: Chong, Qianpeng organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 2 givenname: Jiakun surname: Wen fullname: Wen, Jiakun organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 3 givenname: Qianhui surname: Wan fullname: Wan, Qianhui organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 4 givenname: Wenyi surname: Zeng fullname: Zeng, Wenyi email: zengwy@bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 5 givenname: Qian orcidid: 0000-0002-0354-5490 surname: Yin fullname: Yin, Qian organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 6 givenname: Dong surname: Cheng fullname: Cheng, Dong organization: Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China |
| BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIMHOj93cqCr-pEpc4Gxt7E3qkNiVbUC8PakKZ04jjWZGu9-KLJx3SMgNZzlnXNwOOboejkewecGKOue8ZFW9IEvW1EXGGykuySrGgTFWbiqxJGFL4wTjmPl2QJ1oxH5ClyBZ7yiMvQ82HSba-UCtSxj0-BFnoXZqYQSnkbYQ0dA5fbAx-T7AlFFwhsZk9bt1GGMGXxDmoPez5_orctHBGPH6V9fk7eH-dfeU7V8en3fbfaa5FCnjmhvRaqhqEC3foJTQssbopgBZmUoaWUCBndQNioYX0AlZcllxbIWQujTlmojzrg4-xoCdOgY7QfhWnKkTLTWoP1rqREudac3Fu3MR5-s-LQYVtcX5V2PDzEgZb_-b-AHxGH28 |
| Cites_doi | 10.1109/CVPR52688.2022.02084 10.1109/ACCESS.2024.3374073 10.1016/j.patcog.2013.11.031 10.1109/ICIP51287.2024.10647414 10.1016/j.procs.2015.06.090 10.1109/TFUZZ.2018.2796074 10.1109/TFUZZ.2010.2087382 10.1016/j.knosys.2021.107432 10.1109/TSMCB.2004.831165 10.1093/mnras/stac2438 10.1109/ACCESS.2024.3525065 10.1016/j.asoc.2025.113052 10.1109/3477.764879 10.1109/CVPR.2017.404 10.1109/ICSMC.1998.728197 10.1109/TIP.2012.2219547 10.1109/ACCESS.2025.3542989 10.1109/TPAMI.2010.161 10.1016/0031-3203(95)00120-4 10.1016/j.dsp.2009.11.007 10.1016/j.asoc.2010.05.005 10.1109/TFUZZ.2019.2930030 10.1016/j.cmpb.2020.105317 10.1007/s10462-024-11057-x 10.1109/TIP.2010.2040763 10.1016/j.ins.2025.122639 10.1109/TFUZZ.2024.3405497 10.1007/s12145-023-01129-x 10.1109/TPAMI.2016.2644615 10.1080/01969727308546046 10.1049/iet-ipr.2019.0253 10.1109/CVPR52729.2023.01083 10.1109/42.996338 10.1016/j.eswa.2020.113856 10.1109/IranianMVIP.2011.6121573 10.1109/TFUZZ.2022.3220925 10.1016/0098-3004(84)90020-7 10.1016/j.patcog.2010.07.013 10.1109/34.192473 10.1007/s10462-024-11035-3 10.1016/S0169-7439(02)00052-7 10.1109/ACCESS.2025.3552581 10.1109/ACCESS.2020.3005452 10.1016/j.ins.2022.08.082 10.1109/TFUZZ.2019.2945232 10.1109/TFUZZ.2018.2889018 10.1109/CVPRW63382.2024.00806 10.1016/j.isprsjprs.2014.08.006 10.1002/ima.23179 10.1016/j.eswa.2021.115637 10.1016/j.compbiomed.2025.110716 10.1016/j.asoc.2015.12.022 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.113045 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_113045 S0952197625030763 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c176t-1c1d6bca45a6b18e77ab09dc92a74d47d72a2ef7c9e6912af6731741eb667c3d3 |
| ISSN | 0952-1976 |
| IngestDate | Thu Nov 27 01:03:00 EST 2025 Sat Nov 29 17:15:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image segmentation Unequal clusters Fuzzy C-means algorithm Small-object detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c176t-1c1d6bca45a6b18e77ab09dc92a74d47d72a2ef7c9e6912af6731741eb667c3d3 |
| ORCID | 0000-0002-0354-5490 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_113045 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_113045 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cui, Wang, Zeng, Liu, Zhao (b16) 2025; 58 Ghaffarian, Ghaffarian (b24) 2014; 97 Gao, Yang, Lin, Pan, Li (b22) 2020; 14 Wang, Lijun, Lu, Huchuan, Wang, Yifan, Feng, Mengyang, Wang, Dong, Yin, Baocai, Ruan, Xiang, 2017. Learning to Detect Salient Objects with Image-Level Supervision. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3796–3805. Wang, Zheng, Ma, Lu, Zhong (b51) 2021 Zeng, Liu, Cui, Ma, Xu (b58) 2022; 612 He, Ju, Chen, Jieneng, Lin, Ming-Xian, Yu, Qihang, Yuille, Alan L., 2023. Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11259–11268. Tan, Isa (b47) 2011; 44 Zheng, Jeon, Xu, Wu, Zhang (b60) 2015; 28 Bezdek, Ehrlich, Full (b6) 1984; 10 Chen, Zhang (b10) 2004; 34 Chikhaoui, Khalil, Alfarraj, Motaz, 2024. Advancing Colorectal Polyp Segmentation With Watershed Algorithm-Enhanced Parallel Self-Supervised Learning. In: IEEE International Conference on Image Processing. ICIP, pp. 3124–3130. Yin, Li, Zheng, Li, Cui, Bao (b56) 2022; 516 Singh, Bose (b43) 2021; 185 Krinidis, Chatzis (b28) 2010; 19 Yan, Zhang, Yang, Tang (b54) 2021; 9 Singh (b42) 2020; 189 Lei, Jia, Zhang, He, Meng, Nandi (b30) 2018; 26 Chaira (b8) 2011; 11 Noordam, Van Den Broek, Buydens (b37) 2002; 64 Lin, Huang, Kuo, Lai (b33) 2014; 47 Lei, Jia, Zhang, Liu, Meng, Nandi (b31) 2018; 27 Zhang, Li, Zhang, Nie (b59) 2020; 28 Verma, Agrawal, Sharan (b48) 2016; 46 Gong, Liang, Shi, Ma, Ma (b25) 2012; 22 Chong, Ma, Xu, Wei, Long, Zeng, Cheng (b15) 2025; 721 Song, Jia, Yang, Kasabov (b45) 2023; 31 Badrinarayanan, Kendall, Cipolla (b4) 2017; 39 Cheng, Zhou, Li, Zhang, Yang (b11) 2025; 174 Lei, Liu, Jia, Zhang, Meng, Nandi (b32) 2020; 28 Bensaid, Hall, Bezdek, Clarke (b5) 1996; 29 Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H., 2003. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1, pp. 724–726. Singh, Bose (b44) 2021; 231 Yang, Zhang, Lu, Ma (b55) 2010; 19 Yu, Xie, Fan, Lan, Lei (b57) 2024; 32 Askari (b3) 2021; 165 Rosi, Gabriele, Cuttano, Claudia, Cavagnero, Niccolò, Averta, Giuseppe, Cermelli, Fabio, 2024. The Revenge of BiSeNet: Efficient Multi-Task Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 8066–8074. Xu, Cao, Lu (b53) 2025; 13 Naous, Tarek, Sarkar, Srinjay, Abid, Abubakar, Zou, James, 2022. Clustering Plotted Data by Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 21467–21472. Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L., 2015. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In: 3rd International Conference on Learning Representations. ICLR. Arbeláez, Maire, Fowlkes, Malik (b2) 2010; 33 Dhanachandra, Manglem, Chanu (b17) 2015; 54 Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21 Jia, Su, Rao, Liang, Abualigah, Liu, Chen (b27) 2025; 58 Filipiak, Zapala, Tempczyk, Fensel, Cygan (b21) 2024; 12 Wang, Bu (b49) 2010; 20 Dunn (b20) 1973; 3 Roy, Gupta, Goswami (b41) 2024; 34 Moradi, Ghobad, Shamsi, Mousa, Seda Aghi, Mohammad Hossein, Moradi, Setareh, 2011. Apple Defect Detection Using Statistical Histogram Based Fuzzy C-Means Algorithm. In: 2011 7th Iranian Conference on Machine Vision and Image Processing. pp. 1–6. Dong (b19) 2021; 17 Xia, Hu, Hu, Shi, Bai, Zhong, Zhang (b52) 2016 Moghanloo, Riahi (b34) 2023; 16 Chintalapudi, K. K., Kam, Moshe, 1998. The Credibilistic Fuzzy C-Means Clustering Algorithm. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 2, pp. 2034–2039. Ronneberger (b39) 2017 Perera, Navard, Yilmaz (b38) 2024 Chai, Xiao, Shen, Liu, Li, Guan, Tian (b7) 2025; 13 Krishna, Murty (b29) 1999; 29 Chikkala, Anuradha, Chandra Murty, Rajeswari, Rajeswaran, Murugappan, Chowdhury (b13) 2025; 13 Dialameh, Rajabzadeh, Sadeghi-Goughari, Sim, Kwon (b18) 2025; 196 Gath, Geva (b23) 1989; 11 Ahmed (10.1016/j.engappai.2025.113045_b1) 2002; 21 Cui (10.1016/j.engappai.2025.113045_b16) 2025; 58 Askari (10.1016/j.engappai.2025.113045_b3) 2021; 165 Perera (10.1016/j.engappai.2025.113045_b38) 2024 10.1016/j.engappai.2025.113045_b14 Moghanloo (10.1016/j.engappai.2025.113045_b34) 2023; 16 Bensaid (10.1016/j.engappai.2025.113045_b5) 1996; 29 10.1016/j.engappai.2025.113045_b12 Krishna (10.1016/j.engappai.2025.113045_b29) 1999; 29 10.1016/j.engappai.2025.113045_b50 Singh (10.1016/j.engappai.2025.113045_b44) 2021; 231 Song (10.1016/j.engappai.2025.113045_b45) 2023; 31 Chong (10.1016/j.engappai.2025.113045_b15) 2025; 721 Yin (10.1016/j.engappai.2025.113045_b56) 2022; 516 Dhanachandra (10.1016/j.engappai.2025.113045_b17) 2015; 54 Gao (10.1016/j.engappai.2025.113045_b22) 2020; 14 Ghaffarian (10.1016/j.engappai.2025.113045_b24) 2014; 97 Roy (10.1016/j.engappai.2025.113045_b41) 2024; 34 Filipiak (10.1016/j.engappai.2025.113045_b21) 2024; 12 Chaira (10.1016/j.engappai.2025.113045_b8) 2011; 11 Lin (10.1016/j.engappai.2025.113045_b33) 2014; 47 Verma (10.1016/j.engappai.2025.113045_b48) 2016; 46 10.1016/j.engappai.2025.113045_b9 Chen (10.1016/j.engappai.2025.113045_b10) 2004; 34 Dong (10.1016/j.engappai.2025.113045_b19) 2021; 17 Jia (10.1016/j.engappai.2025.113045_b27) 2025; 58 Noordam (10.1016/j.engappai.2025.113045_b37) 2002; 64 Xu (10.1016/j.engappai.2025.113045_b53) 2025; 13 10.1016/j.engappai.2025.113045_b46 Dialameh (10.1016/j.engappai.2025.113045_b18) 2025; 196 10.1016/j.engappai.2025.113045_b40 Lei (10.1016/j.engappai.2025.113045_b31) 2018; 27 Singh (10.1016/j.engappai.2025.113045_b42) 2020; 189 Xia (10.1016/j.engappai.2025.113045_b52) 2016 Gath (10.1016/j.engappai.2025.113045_b23) 1989; 11 Lei (10.1016/j.engappai.2025.113045_b32) 2020; 28 10.1016/j.engappai.2025.113045_b36 10.1016/j.engappai.2025.113045_b35 Zeng (10.1016/j.engappai.2025.113045_b58) 2022; 612 Wang (10.1016/j.engappai.2025.113045_b51) 2021 Arbeláez (10.1016/j.engappai.2025.113045_b2) 2010; 33 Zhang (10.1016/j.engappai.2025.113045_b59) 2020; 28 Yu (10.1016/j.engappai.2025.113045_b57) 2024; 32 Yan (10.1016/j.engappai.2025.113045_b54) 2021; 9 Chikkala (10.1016/j.engappai.2025.113045_b13) 2025; 13 Singh (10.1016/j.engappai.2025.113045_b43) 2021; 185 Tan (10.1016/j.engappai.2025.113045_b47) 2011; 44 Krinidis (10.1016/j.engappai.2025.113045_b28) 2010; 19 Lei (10.1016/j.engappai.2025.113045_b30) 2018; 26 Badrinarayanan (10.1016/j.engappai.2025.113045_b4) 2017; 39 Bezdek (10.1016/j.engappai.2025.113045_b6) 1984; 10 Cheng (10.1016/j.engappai.2025.113045_b11) 2025; 174 Dunn (10.1016/j.engappai.2025.113045_b20) 1973; 3 Gong (10.1016/j.engappai.2025.113045_b25) 2012; 22 10.1016/j.engappai.2025.113045_b26 Yang (10.1016/j.engappai.2025.113045_b55) 2010; 19 Wang (10.1016/j.engappai.2025.113045_b49) 2010; 20 Chai (10.1016/j.engappai.2025.113045_b7) 2025; 13 Ronneberger (10.1016/j.engappai.2025.113045_b39) 2017 Zheng (10.1016/j.engappai.2025.113045_b60) 2015; 28 |
| References_xml | – volume: 29 start-page: 433 year: 1999 end-page: 439 ident: b29 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 29 start-page: 859 year: 1996 end-page: 871 ident: b5 article-title: Partially supervised clustering for image segmentation publication-title: Pattern Recognit. – volume: 14 start-page: 2343 year: 2020 end-page: 2355 ident: b22 article-title: Conditional semi-fuzzy C-means clustering for imbalanced dataset publication-title: IET Image Process. – volume: 16 start-page: 3913 year: 2023 end-page: 3930 ident: b34 article-title: Integrating watershed segmentation algorithm and supervised Bayesian classification for the assessment of petrophysical parameters, pore properties, and lithofacies: a case study from Abadan Plain, SW Iran publication-title: Earth Sci. Inform. – reference: Rosi, Gabriele, Cuttano, Claudia, Cavagnero, Niccolò, Averta, Giuseppe, Cermelli, Fabio, 2024. The Revenge of BiSeNet: Efficient Multi-Task Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 8066–8074. – volume: 721 year: 2025 ident: b15 article-title: Spatial-frequency collaborative feature constraint based on interval type-2 fuzzy set and wavelet transform for high-resolution remote sensing image segmentation publication-title: Inform. Sci. – volume: 58 start-page: 55 year: 2025 ident: b27 article-title: Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation publication-title: Artif. Intell. Rev. – volume: 174 year: 2025 ident: b11 article-title: A morphological difference and statistically sparse transformer-based deep neural network for medical image segmentation publication-title: Appl. Soft Comput. – volume: 28 start-page: 2078 year: 2020 end-page: 2092 ident: b32 article-title: Automatic fuzzy clustering framework for image segmentation publication-title: IEEE Trans. Fuzzy Syst. – reference: Wang, Lijun, Lu, Huchuan, Wang, Yifan, Feng, Mengyang, Wang, Dong, Yin, Baocai, Ruan, Xiang, 2017. Learning to Detect Salient Objects with Image-Level Supervision. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3796–3805. – volume: 19 start-page: 105 year: 2010 end-page: 115 ident: b55 article-title: A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises publication-title: IEEE Trans. Fuzzy Syst. – start-page: 3 year: 2017 ident: b39 article-title: Invited talk: U-Net convolutional networks for biomedical image segmentation publication-title: Bildverarbeitung FÜr Die Medizin 2017 - Algorithmen - Systeme - Anwendungen, Proceedings Des Workshops – reference: Naous, Tarek, Sarkar, Srinjay, Abid, Abubakar, Zou, James, 2022. Clustering Plotted Data by Image Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 21467–21472. – volume: 11 start-page: 773 year: 1989 end-page: 780 ident: b23 article-title: Unsupervised optimal fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 97 start-page: 46 year: 2014 end-page: 57 ident: b24 article-title: Automatic histogram-based fuzzy C-means clustering for remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b4 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 year: 2024 ident: b41 article-title: Revolutionizing colon histopathology glandular segmentation using an ensemble network with Watershed Algorithm publication-title: Int. J. Imaging Syst. Technol. – volume: 22 start-page: 573 year: 2012 end-page: 584 ident: b25 article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. – volume: 28 start-page: 961 year: 2015 end-page: 973 ident: b60 article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm publication-title: J. Intell. Fuzzy Systems – volume: 44 start-page: 1 year: 2011 end-page: 15 ident: b47 article-title: Color image segmentation using histogram thresholding–fuzzy C-means hybrid approach publication-title: Pattern Recognit. – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 33 start-page: 898 year: 2010 end-page: 916 ident: b2 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 892 year: 2021 end-page: 904 ident: b19 article-title: Image semantic segmentation using improved ENet network publication-title: J. Inf. Process. Syst. – volume: 12 start-page: 37744 year: 2024 end-page: 37756 ident: b21 article-title: Polite teacher: Semi-supervised instance segmentation with mutual learning and pseudo-label thresholding publication-title: IEEE Access – reference: Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L., 2015. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In: 3rd International Conference on Learning Representations. ICLR. – volume: 31 start-page: 2153 year: 2023 end-page: 2166 ident: b45 article-title: Image segmentation based on fuzzy low-rank structural clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 13 start-page: 41682 year: 2025 end-page: 41707 ident: b13 article-title: Enhancing breast cancer diagnosis with bidirectional recurrent neural networks: A novel approach for histopathological image multi-classification publication-title: IEEE Access – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b20 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. – reference: Chintalapudi, K. K., Kam, Moshe, 1998. The Credibilistic Fuzzy C-Means Clustering Algorithm. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 2, pp. 2034–2039. – year: 2021 ident: b51 article-title: Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation publication-title: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, Virtual – volume: 185 year: 2021 ident: b43 article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation publication-title: Expert Syst. Appl. – volume: 516 start-page: 3082 year: 2022 end-page: 3091 ident: b56 article-title: Pulsar candidate selection with residual convolutional autoencoder publication-title: Mon. Not. R. Astron. Soc. – volume: 196 year: 2025 ident: b18 article-title: Dualswinunet++: An enhanced swin-unet architecture with dual decoders for PTMC segmentation publication-title: Comput. Biol. Med. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b6 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – reference: Chikhaoui, Khalil, Alfarraj, Motaz, 2024. Advancing Colorectal Polyp Segmentation With Watershed Algorithm-Enhanced Parallel Self-Supervised Learning. In: IEEE International Conference on Image Processing. ICIP, pp. 3124–3130. – reference: Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H., 2003. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1, pp. 724–726. – volume: 189 year: 2020 ident: b42 article-title: A neutrosophic-entropy based clustering algorithm (NECCA) with hsv color system: A special application in segmentation of Parkinson’s disease (PD) MR images publication-title: Comput. Methods Programs Biomed. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 1173 year: 2010 end-page: 1182 ident: b49 article-title: A fast and robust image segmentation using FCM with spatial information publication-title: Digit. Signal Process. – reference: He, Ju, Chen, Jieneng, Lin, Ming-Xian, Yu, Qihang, Yuille, Alan L., 2023. Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11259–11268. – volume: 58 start-page: 56 year: 2025 ident: b16 article-title: Possibilistic C-means with novel image representation for image segmentation publication-title: Artif. Intell. Rev. – volume: 13 start-page: 55877 year: 2025 end-page: 55886 ident: b53 article-title: Improved u-net++ semantic segmentation method for remote sensing images publication-title: IEEE Access – volume: 612 start-page: 465 year: 2022 end-page: 480 ident: b58 article-title: Interval possibilistic C-means algorithm and its application in image segmentation publication-title: Inform. Sci. – volume: 28 start-page: 2814 year: 2020 end-page: 2824 ident: b59 article-title: Deep fuzzy K-means with adaptive loss and entropy regularization publication-title: IEEE Trans. Fuzzy Syst. – volume: 11 start-page: 1711 year: 2011 end-page: 1717 ident: b8 article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images publication-title: Appl. Soft Comput. – volume: 64 start-page: 65 year: 2002 end-page: 78 ident: b37 article-title: Multivariate image segmentation with cluster size insensitive fuzzy C-means publication-title: Chemometr. Intell. Lab. Syst. – volume: 47 start-page: 2042 year: 2014 end-page: 2056 ident: b33 article-title: A size-insensitive integrity-based fuzzy C-means method for data clustering publication-title: Pattern Recognit. – volume: 32 start-page: 4595 year: 2024 end-page: 4609 ident: b57 article-title: Mahalanobis-Kernel distance-based suppressed possibilistic C-means clustering algorithm for imbalanced image segmentation publication-title: IEEE Trans. Fuzzy Syst. – start-page: 4981 year: 2024 end-page: 4988 ident: b38 article-title: SegFormer3D: an efficient transformer for 3D medical image segmentation publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Workshops, Seattle, WA, USA, June 17-18, 2024 – volume: 54 start-page: 764 year: 2015 end-page: 771 ident: b17 article-title: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm publication-title: Procedia Comput. Sci. – volume: 27 start-page: 1753 year: 2018 end-page: 1766 ident: b31 article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. – year: 2016 ident: b52 article-title: AID: A benchmark dataset for performance evaluation of aerial scene classification – volume: 165 year: 2021 ident: b3 article-title: Fuzzy C-means clustering Algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development publication-title: Expert Syst. Appl. – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b30 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. – volume: 46 start-page: 543 year: 2016 end-page: 557 ident: b48 article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. – volume: 13 start-page: 6277 year: 2025 end-page: 6291 ident: b7 article-title: Transdeep: Transformer-integrated DeepLabV3+ for image semantic segmentation publication-title: IEEE Access – volume: 231 year: 2021 ident: b44 article-title: Ambiguous d-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of ct scan images of covid-19 publication-title: Knowl.-Based Syst. – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b28 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 41294 year: 2021 end-page: 41319 ident: b54 article-title: Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm publication-title: IEEE Access – reference: Moradi, Ghobad, Shamsi, Mousa, Seda Aghi, Mohammad Hossein, Moradi, Setareh, 2011. Apple Defect Detection Using Statistical Histogram Based Fuzzy C-Means Algorithm. In: 2011 7th Iranian Conference on Machine Vision and Image Processing. pp. 1–6. – ident: 10.1016/j.engappai.2025.113045_b36 doi: 10.1109/CVPR52688.2022.02084 – volume: 12 start-page: 37744 year: 2024 ident: 10.1016/j.engappai.2025.113045_b21 article-title: Polite teacher: Semi-supervised instance segmentation with mutual learning and pseudo-label thresholding publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3374073 – volume: 47 start-page: 2042 issue: 5 year: 2014 ident: 10.1016/j.engappai.2025.113045_b33 article-title: A size-insensitive integrity-based fuzzy C-means method for data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.11.031 – ident: 10.1016/j.engappai.2025.113045_b12 doi: 10.1109/ICIP51287.2024.10647414 – volume: 54 start-page: 764 year: 2015 ident: 10.1016/j.engappai.2025.113045_b17 article-title: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.06.090 – volume: 26 start-page: 3027 issue: 5 year: 2018 ident: 10.1016/j.engappai.2025.113045_b30 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796074 – volume: 19 start-page: 105 issue: 1 year: 2010 ident: 10.1016/j.engappai.2025.113045_b55 article-title: A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2087382 – volume: 231 year: 2021 ident: 10.1016/j.engappai.2025.113045_b44 article-title: Ambiguous d-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of ct scan images of covid-19 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107432 – volume: 34 start-page: 1907 issue: 4 year: 2004 ident: 10.1016/j.engappai.2025.113045_b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2004.831165 – volume: 516 start-page: 3082 issue: 2 year: 2022 ident: 10.1016/j.engappai.2025.113045_b56 article-title: Pulsar candidate selection with residual convolutional autoencoder publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stac2438 – volume: 13 start-page: 6277 year: 2025 ident: 10.1016/j.engappai.2025.113045_b7 article-title: Transdeep: Transformer-integrated DeepLabV3+ for image semantic segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3525065 – volume: 174 year: 2025 ident: 10.1016/j.engappai.2025.113045_b11 article-title: A morphological difference and statistically sparse transformer-based deep neural network for medical image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.113052 – volume: 29 start-page: 433 issue: 3 year: 1999 ident: 10.1016/j.engappai.2025.113045_b29 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.764879 – ident: 10.1016/j.engappai.2025.113045_b50 doi: 10.1109/CVPR.2017.404 – ident: 10.1016/j.engappai.2025.113045_b14 doi: 10.1109/ICSMC.1998.728197 – volume: 22 start-page: 573 issue: 2 year: 2012 ident: 10.1016/j.engappai.2025.113045_b25 article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2219547 – volume: 13 start-page: 41682 year: 2025 ident: 10.1016/j.engappai.2025.113045_b13 article-title: Enhancing breast cancer diagnosis with bidirectional recurrent neural networks: A novel approach for histopathological image multi-classification publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3542989 – volume: 33 start-page: 898 issue: 5 year: 2010 ident: 10.1016/j.engappai.2025.113045_b2 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – ident: 10.1016/j.engappai.2025.113045_b46 – volume: 29 start-page: 859 issue: 5 year: 1996 ident: 10.1016/j.engappai.2025.113045_b5 article-title: Partially supervised clustering for image segmentation publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00120-4 – volume: 20 start-page: 1173 issue: 4 year: 2010 ident: 10.1016/j.engappai.2025.113045_b49 article-title: A fast and robust image segmentation using FCM with spatial information publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.11.007 – volume: 11 start-page: 1711 issue: 2 year: 2011 ident: 10.1016/j.engappai.2025.113045_b8 article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.005 – volume: 28 start-page: 2078 issue: 9 year: 2020 ident: 10.1016/j.engappai.2025.113045_b32 article-title: Automatic fuzzy clustering framework for image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2930030 – volume: 189 year: 2020 ident: 10.1016/j.engappai.2025.113045_b42 article-title: A neutrosophic-entropy based clustering algorithm (NECCA) with hsv color system: A special application in segmentation of Parkinson’s disease (PD) MR images publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105317 – volume: 58 start-page: 56 issue: 2 year: 2025 ident: 10.1016/j.engappai.2025.113045_b16 article-title: Possibilistic C-means with novel image representation for image segmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-11057-x – year: 2021 ident: 10.1016/j.engappai.2025.113045_b51 article-title: Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 10.1016/j.engappai.2025.113045_b28 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – volume: 721 year: 2025 ident: 10.1016/j.engappai.2025.113045_b15 article-title: Spatial-frequency collaborative feature constraint based on interval type-2 fuzzy set and wavelet transform for high-resolution remote sensing image segmentation publication-title: Inform. Sci. doi: 10.1016/j.ins.2025.122639 – volume: 32 start-page: 4595 issue: 8 year: 2024 ident: 10.1016/j.engappai.2025.113045_b57 article-title: Mahalanobis-Kernel distance-based suppressed possibilistic C-means clustering algorithm for imbalanced image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2024.3405497 – volume: 16 start-page: 3913 issue: 4 year: 2023 ident: 10.1016/j.engappai.2025.113045_b34 article-title: Integrating watershed segmentation algorithm and supervised Bayesian classification for the assessment of petrophysical parameters, pore properties, and lithofacies: a case study from Abadan Plain, SW Iran publication-title: Earth Sci. Inform. doi: 10.1007/s12145-023-01129-x – year: 2016 ident: 10.1016/j.engappai.2025.113045_b52 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.engappai.2025.113045_b4 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.engappai.2025.113045_b20 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 14 start-page: 2343 issue: 11 year: 2020 ident: 10.1016/j.engappai.2025.113045_b22 article-title: Conditional semi-fuzzy C-means clustering for imbalanced dataset publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0253 – ident: 10.1016/j.engappai.2025.113045_b26 doi: 10.1109/CVPR52729.2023.01083 – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.engappai.2025.113045_b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – start-page: 4981 year: 2024 ident: 10.1016/j.engappai.2025.113045_b38 article-title: SegFormer3D: an efficient transformer for 3D medical image segmentation – volume: 165 year: 2021 ident: 10.1016/j.engappai.2025.113045_b3 article-title: Fuzzy C-means clustering Algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113856 – ident: 10.1016/j.engappai.2025.113045_b35 doi: 10.1109/IranianMVIP.2011.6121573 – volume: 31 start-page: 2153 issue: 7 year: 2023 ident: 10.1016/j.engappai.2025.113045_b45 article-title: Image segmentation based on fuzzy low-rank structural clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2022.3220925 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.engappai.2025.113045_b6 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – start-page: 3 year: 2017 ident: 10.1016/j.engappai.2025.113045_b39 article-title: Invited talk: U-Net convolutional networks for biomedical image segmentation – volume: 44 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.engappai.2025.113045_b47 article-title: Color image segmentation using histogram thresholding–fuzzy C-means hybrid approach publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.07.013 – volume: 11 start-page: 773 issue: 7 year: 1989 ident: 10.1016/j.engappai.2025.113045_b23 article-title: Unsupervised optimal fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192473 – volume: 17 start-page: 892 issue: 5 year: 2021 ident: 10.1016/j.engappai.2025.113045_b19 article-title: Image semantic segmentation using improved ENet network publication-title: J. Inf. Process. Syst. – volume: 58 start-page: 55 issue: 2 year: 2025 ident: 10.1016/j.engappai.2025.113045_b27 article-title: Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-11035-3 – volume: 64 start-page: 65 issue: 1 year: 2002 ident: 10.1016/j.engappai.2025.113045_b37 article-title: Multivariate image segmentation with cluster size insensitive fuzzy C-means publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00052-7 – volume: 13 start-page: 55877 year: 2025 ident: 10.1016/j.engappai.2025.113045_b53 article-title: Improved u-net++ semantic segmentation method for remote sensing images publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3552581 – volume: 9 start-page: 41294 year: 2021 ident: 10.1016/j.engappai.2025.113045_b54 article-title: Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005452 – volume: 612 start-page: 465 year: 2022 ident: 10.1016/j.engappai.2025.113045_b58 article-title: Interval possibilistic C-means algorithm and its application in image segmentation publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.08.082 – volume: 28 start-page: 2814 issue: 11 year: 2020 ident: 10.1016/j.engappai.2025.113045_b59 article-title: Deep fuzzy K-means with adaptive loss and entropy regularization publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2945232 – ident: 10.1016/j.engappai.2025.113045_b9 – volume: 27 start-page: 1753 issue: 9 year: 2018 ident: 10.1016/j.engappai.2025.113045_b31 article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2889018 – ident: 10.1016/j.engappai.2025.113045_b40 doi: 10.1109/CVPRW63382.2024.00806 – volume: 28 start-page: 961 issue: 2 year: 2015 ident: 10.1016/j.engappai.2025.113045_b60 article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm publication-title: J. Intell. Fuzzy Systems – volume: 97 start-page: 46 year: 2014 ident: 10.1016/j.engappai.2025.113045_b24 article-title: Automatic histogram-based fuzzy C-means clustering for remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.006 – volume: 34 issue: 5 year: 2024 ident: 10.1016/j.engappai.2025.113045_b41 article-title: Revolutionizing colon histopathology glandular segmentation using an ensemble network with Watershed Algorithm publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.23179 – volume: 185 year: 2021 ident: 10.1016/j.engappai.2025.113045_b43 article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115637 – volume: 196 year: 2025 ident: 10.1016/j.engappai.2025.113045_b18 article-title: Dualswinunet++: An enhanced swin-unet architecture with dual decoders for PTMC segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2025.110716 – volume: 46 start-page: 543 year: 2016 ident: 10.1016/j.engappai.2025.113045_b48 article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.022 |
| SSID | ssj0003846 |
| Score | 2.4445717 |
| Snippet | Traditional fuzzy C-means (FCM) clustering and its variants, as important unsupervised image segmentation methods, have average performance, usually perform... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 113045 |
| SubjectTerms | Fuzzy C-means algorithm Image segmentation Small-object detection Unequal clusters |
| Title | A small-object segmentation algorithm for intercluster imbalance based on histogram- and stickiness-aware boosting |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.113045 |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlJR-4RS51HnZ8XKEi4FCBKGJvkeM4bdpsdpVk-_gT_GbGcZxESyVAiEu0suLxbuZbezLzzQxCb3TIAjhJQhLFqSahporInFOSx3keSWoCR7bZBD8-jhcL8Xk2--FyYS5LXlXx9bVY_1dVwxgo26TO_oW6B6EwAJ9B6XAFtcP1jxQ_95qlLEuySo2LxWv06bLPL6o8WZ6u6qI9W3bsQlMqolblxtRK8IplaliO8Dc3B1tmgghdLWLD3iJdiMFUdL7oWPJEXhnCGBjoTeuOPufdH-sbetPgeMc3qDtiUtcmZFIJdGQY9PTgLwDZte7ldlEjm0BSyIvNgOXv1nNr7j3bFIP_W1sRMOWmmHo0_G2PxpBqM_KarL_SJ1TYZjHD1m03x1-OAeuROD-ANeGnyuIAlolM-5pDW7tyq8T2VyPcyAZ7EPY8FtxBuz6PBOySu_OPR4tPw9kexDb1y32ZSc757avdbu5MTJiTh-h-_-6B5xYzj9BMV4_Rg_49BPe7fANDrtWHG3uC6jmeogpPUYUHVGFAFZ6iCg-owh2qMNw9ogoDqvA2qrBD1VP07f3RybsPpG_XQRTlrCVU0YylSoaRZCmNNecyPRSZEr7kYRbyjPvS1zlXQjNBfZkzDsZrSHXKGFdBFjxDO9Wq0nsIUyZ8DfNiJuIw40KmPAeBikmRpSoU--ite6rJ2lZlSRxd8TxxekiMHhKrh30k3MNPetvS2owJYOY3c5__w9wX6N4I8Zdop603-hW6qy7boqlf9_D6CWPvqeo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+small-object+segmentation+algorithm+for+intercluster+imbalance+based+on+histogram-+and+stickiness-aware+boosting&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chong%2C+Qianpeng&rft.au=Wen%2C+Jiakun&rft.au=Wan%2C+Qianhui&rft.au=Zeng%2C+Wenyi&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=163&rft_id=info:doi/10.1016%2Fj.engappai.2025.113045&rft.externalDocID=S0952197625030763 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |