Hydrogen uptake prediction in porous carbon materials explained by decision tree machine learning Algorithms: From experimental data to interpretable predictions

Widespread adoption of hydrogen fuel is constrained by the cost and safety limits of high-pressure and cryogenic storage. Adsorption-based storage in Porous Carbon Materials (PCMs) is a promising alternative, yet its potential is unrealized due to the research time and cost of discovery. A Machine L...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of hydrogen energy Ročník 197; s. 152704
Hlavní autori: Sunkara, Hemanth, Bhat A S, Shravani, R, Namitha, Acharya, Sushmitha, Shekar, Selva Kumar, Sainath, Krishnamurthy, Siddiqui, Shabnam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 05.01.2026
Predmet:
ISSN:0360-3199
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.