Hydrogen uptake prediction in porous carbon materials explained by decision tree machine learning Algorithms: From experimental data to interpretable predictions
Widespread adoption of hydrogen fuel is constrained by the cost and safety limits of high-pressure and cryogenic storage. Adsorption-based storage in Porous Carbon Materials (PCMs) is a promising alternative, yet its potential is unrealized due to the research time and cost of discovery. A Machine L...
Uložené v:
| Vydané v: | International journal of hydrogen energy Ročník 197; s. 152704 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
05.01.2026
|
| Predmet: | |
| ISSN: | 0360-3199 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!