Hydrogen uptake prediction in porous carbon materials explained by decision tree machine learning Algorithms: From experimental data to interpretable predictions

Widespread adoption of hydrogen fuel is constrained by the cost and safety limits of high-pressure and cryogenic storage. Adsorption-based storage in Porous Carbon Materials (PCMs) is a promising alternative, yet its potential is unrealized due to the research time and cost of discovery. A Machine L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy Jg. 197; S. 152704
Hauptverfasser: Sunkara, Hemanth, Bhat A S, Shravani, R, Namitha, Acharya, Sushmitha, Shekar, Selva Kumar, Sainath, Krishnamurthy, Siddiqui, Shabnam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 05.01.2026
Schlagworte:
ISSN:0360-3199
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!