Hydrogen uptake prediction in porous carbon materials explained by decision tree machine learning Algorithms: From experimental data to interpretable predictions
Widespread adoption of hydrogen fuel is constrained by the cost and safety limits of high-pressure and cryogenic storage. Adsorption-based storage in Porous Carbon Materials (PCMs) is a promising alternative, yet its potential is unrealized due to the research time and cost of discovery. A Machine L...
Gespeichert in:
| Veröffentlicht in: | International journal of hydrogen energy Jg. 197; S. 152704 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
05.01.2026
|
| Schlagworte: | |
| ISSN: | 0360-3199 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!