An Efficient Algorithm for Maximum Trajectory Coverage Query With Approximation Guarantee
In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula>...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 23; číslo 12; s. 1 - 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2-3 times. |
|---|---|
| AbstractList | In this paper, we study the [Formula Omitted] Maximum Trajectory Coverage Query, which aims to find [Formula Omitted] routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2–3 times. In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2-3 times. |
| Author | Kim, Jiwon He, Dan Zhou, Xiaofang Zhou, Thomas |
| Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0001-9064-566X surname: He fullname: He, Dan organization: Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, QLD, Australia – sequence: 2 givenname: Thomas surname: Zhou fullname: Zhou, Thomas organization: Department of Computer Science, ETH Zürich, Zürich, Switzerland – sequence: 3 givenname: Xiaofang orcidid: 0000-0001-6343-1455 surname: Zhou fullname: Zhou, Xiaofang organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong – sequence: 4 givenname: Jiwon orcidid: 0000-0001-6380-3001 surname: Kim fullname: Kim, Jiwon organization: Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, QLD, Australia |
| BookMark | eNo9kFtLwzAUgINMcJv-APEl4HNnTpo0y2MZcw4mIlbEp5C1p7Nja2baivv3pmz4dC5858I3IoPa1UjILbAJANMP2TJ7m3DG-STmTAmtL8gQpJxGjEEy6HMuIs0kuyKjptmGrpAAQ_KZ1nRellVeYd3SdLdxvmq_9rR0nj7b32rf7Wnm7Rbz1vkjnbkf9HaD9LXDUH4ElqaHg3eBtG3larrorLd1i3hNLku7a_DmHMfk_XGezZ6i1ctiOUtXUQ5KthFoK3QSc7QKtMgLC2urCo0cEpzm64IrXsikYHlSCLvWSqNliWSqkKwUqGw8JvenveGL7w6b1mxd5-tw0nAlVAKglAwUnKjcu6bxWJqDDy_7owFmeoOmN2h6g-ZsMMzcnWYqRPzndbCoBIv_AIs6byk |
| CODEN | ITISFG |
| Cites_doi | 10.1109/FOCS.2018.00020 10.1145/261342.571216 10.14778/3291264.3291266 10.1109/MDM.2008.24 10.1016/j.trc.2019.12.004 10.1007/978-3-030-73194-6_44 10.1016/j.tcs.2010.06.026 10.1016/j.trc.2019.02.006 10.1109/TITS.2020.3019373 10.1145/3397536.3422350 10.1007/978-3-642-22922-0_14 10.1007/978-3-540-68552-4_24 10.1006/jagm.2001.1183 10.1145/3183713.3196913 10.3390/info12050202 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5 10.1061/(ASCE)0733-947X(2009)135:8(491) 10.14778/2904121.2904122 10.1145/1807167.1807197 10.2172/4785039 10.1109/SFCS.1978.1 10.1109/TKDE.2017.2776268 10.1007/978-3-319-22363-6_10 10.1145/602259.602266 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3207499 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TITS_2022_3207499 9905740 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hong Kong Jockey Club Charities Trust – fundername: Hong Kong Research Grants Council grantid: 16202722 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c175t-19a49632ea7194cda1ba7d9e216e8cbd272d56d0c6d4ab979ea06507d50f4e7a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862341300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Nov 30 04:39:10 EST 2025 Sat Nov 29 06:35:01 EST 2025 Wed Aug 27 02:29:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c175t-19a49632ea7194cda1ba7d9e216e8cbd272d56d0c6d4ab979ea06507d50f4e7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6380-3001 0000-0001-6343-1455 0000-0001-9064-566X |
| PQID | 2747611775 |
| PQPubID | 75735 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2022_3207499 ieee_primary_9905740 proquest_journals_2747611775 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 chao (ref9) 2017 ref1 ref17 ref16 pfoser (ref18) 2000 ref24 ref23 ref25 ref22 ref21 tao (ref20) 2001 tao (ref19) 2001 ref27 ref29 potts (ref28) 2010 ref8 ref7 ref4 ref3 ref6 manurangsi (ref26) 2018 bian (ref5) 2017; 70 |
| References_xml | – ident: ref25 doi: 10.1109/FOCS.2018.00020 – ident: ref22 doi: 10.1145/261342.571216 – ident: ref1 doi: 10.14778/3291264.3291266 – ident: ref21 doi: 10.1109/MDM.2008.24 – ident: ref30 doi: 10.1016/j.trc.2019.12.004 – ident: ref15 doi: 10.1007/978-3-030-73194-6_44 – ident: ref24 doi: 10.1016/j.tcs.2010.06.026 – ident: ref29 doi: 10.1016/j.trc.2019.02.006 – ident: ref31 doi: 10.1109/TITS.2020.3019373 – ident: ref14 doi: 10.1145/3397536.3422350 – ident: ref11 doi: 10.1007/978-3-642-22922-0_14 – start-page: 431 year: 2001 ident: ref20 article-title: MV3R-tree: A spatio-temporal access method for timestamp and interval queries publication-title: Proc Int Conf Very Large Data Bases – ident: ref7 doi: 10.1007/978-3-540-68552-4_24 – ident: ref23 doi: 10.1006/jagm.2001.1183 – ident: ref8 doi: 10.1145/3183713.3196913 – start-page: 247 year: 2017 ident: ref9 article-title: A performance study on large-scale data analytics using disk-based and in-memory database systems publication-title: Proc IEEE Int Conf Big Data Smart Comput (BigComp) – ident: ref16 doi: 10.3390/info12050202 – ident: ref2 doi: 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5 – ident: ref27 doi: 10.1061/(ASCE)0733-947X(2009)135:8(491) – year: 2010 ident: ref28 publication-title: A guide for planning and operating flexible public transportation services – ident: ref3 doi: 10.14778/2904121.2904122 – ident: ref10 doi: 10.1145/1807167.1807197 – volume: 70 start-page: 498 year: 2017 ident: ref5 article-title: Guarantees for greedy maximization of non-submodular functions with applications publication-title: Proc 34th Int Conf Mach Learn – start-page: 223 year: 2001 ident: ref19 article-title: Efficient historical R-trees publication-title: Proc 13th Int Conf Sci Stat Database Manage (SSDBM) – start-page: 395 year: 2000 ident: ref18 article-title: Novel approaches to the indexing of moving object trajectories publication-title: Proc VLDB – ident: ref6 doi: 10.2172/4785039 – ident: ref4 doi: 10.1109/SFCS.1978.1 – ident: ref13 doi: 10.1109/TKDE.2017.2776268 – year: 2018 ident: ref26 article-title: A note on max k-vertex cover: Faster FPT-AS, smaller approximate kernel and improved approximation publication-title: arXiv 1810 03792 – ident: ref12 doi: 10.1007/978-3-319-22363-6_10 – ident: ref17 doi: 10.1145/602259.602266 |
| SSID | ssj0014511 |
| Score | 2.3726375 |
| Snippet | In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find... In this paper, we study the [Formula Omitted] Maximum Trajectory Coverage Query, which aims to find [Formula Omitted] routes in a public transport system that... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Approximation algorithms check-in trajectory Greedy algorithms location-based applications Mathematical analysis maximum coverage Optimization Public transportation Route selection Spatial database Spatial databases STEM Trajectory Transportation systems Urban areas |
| Title | An Efficient Algorithm for Maximum Trajectory Coverage Query With Approximation Guarantee |
| URI | https://ieeexplore.ieee.org/document/9905740 https://www.proquest.com/docview/2747611775 |
| Volume | 23 |
| WOSCitedRecordID | wos000862341300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QeNCDLzSiaHrwZFzodrtbeiQEookSjah42nTbUTECBsHov3daFjTRi7dtMm0287Xz6LRfCTli3EQZrqHACmkCkTAd6IdQB-hrQYuIgfC3-G_PZadT7_XUZYGcLO7CAIA_fAZV9-lr-XZkpm6rrIaWM5YCE_QlKeXsrtaiYuB4tjw3KhcBis0rmCFTte5Z9xozQc6rEUeP6Wlev32Qf1TllyX27qW9_r8f2yBreRhJGzPcN0kBhltk9Qe5YIncN4a05QkisC9tvDyOxv3J04BilEov9Ed_MB1Q9FTPftv-kzbdWU40LvRqCti8Q1nacITjKOnRo242ORxgm9y0W93maZA_pBAYjA4mQai0wIXGQctQCWN1mGlpFfAwgbrJLJfcxollJrFCZ0oq0C5ykzZmDwKkjnZIcTgawi6hOlbcgMosAyaMUJlSFodkEbrCWIe6TI7nqk1fZ3wZqc8zmEodDqnDIc1xKJOS0-VCMFdjmVTmYKT5inpLXfacuApzvPd3r32y4saeHTWpkOJkPIUDsmzeJ_238aGfLF8msr1u |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5VHRLsYRuUibIx_LAnRDrHceL6sZpataKtNq1AeYoc-wZFa4v6Y9r--53dtCDBC2-JdHYifz7fne_8GeCcC5sUpEORk8pGMuMmMrexicjWopEJRxlO8X_pq-GwOR7rqwp83J2FQcRQfIYN_xhy-W5u136r7IJWzlRJCtD3UilFvDmttcsZeKatwI4qZESC2xxmzPXFqDe6oVhQiEYiyGYGotffVihcq_LXWhwMTOfw_37tCA5KR5K1Nsi_hArOXsH-H_SCNfjWmrF2oIigtqx1932-mKx-TBn5qWxgHibT9ZSRrfoZNu4f2aWv5qTlhV2vkV6_kixrecpxkgz4MT-fPBL4Gj532qPLblRepRBZ8g9WUayNJFUTaFSspXUmLoxyGkWcYdMWTijh0sxxmzlpCq00Gu-7KZfyW4nKJMdQnc1n-AaYSbWwqAvHkUsrdaG1oy55QsYwNbGpw4ft0Oa_NowZeYg0uM49DrnHIS9xqEPNj-VOsBzGOpxuwchLnVrmPn7OfI45ffvvVu_heXc06Of93vDTCbzw39kUnpxCdbVY4zt4Zu9Xk-XiLEycJyyNwLU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Algorithm+for+Maximum+Trajectory+Coverage+Query+With+Approximation+Guarantee&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=He%2C+Dan&rft.au=Zhou%2C+Thomas&rft.au=Zhou%2C+Xiaofang&rft.au=Kim%2C+Jiwon&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=12&rft.spage=24031&rft_id=info:doi/10.1109%2FTITS.2022.3207499&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |