An Efficient Algorithm for Maximum Trajectory Coverage Query With Approximation Guarantee

In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula>...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 23; no. 12; pp. 1 - 13
Main Authors: He, Dan, Zhou, Thomas, Zhou, Xiaofang, Kim, Jiwon
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1524-9050, 1558-0016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2-3 times.
AbstractList In this paper, we study the [Formula Omitted] Maximum Trajectory Coverage Query, which aims to find [Formula Omitted] routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2–3 times.
In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> routes in a public transport system that can serve the maximum number of users with given journey trajectories. In existing studies, they only consider independent service that includes no transfers, but overlooks the aggregative service that includes transfer of multiple routes, resulting in inferior results. In our study, we consider both independent and aggregative services, which can help provide more meaningful results. However, the problem is NP-hard and non-submodular. To address this problem, we propose a greedy algorithm that iteratively selects the route with the maximum marginal gain considering both independent and aggregative services, and show that it outperforms the competitor by up to 60% in terms of accuracy. Since the problem is non-submodular, the greedy algorithm typically does not provide any approximation guarantee. By a mild assumption, we show that our proposed solution provides a constant approximation with respect to the optimal one. Moreover, since we need to consider both the independent and aggregative service, our greedy algorithm becomes more complicated and brings additional time overheads. To overcome such a deficiency, we further accelerate our solution using several heuristics and present an efficient method for spatially associating trajectories and routes. Extensive experiments on real-world datasets demonstrate that our optimisation brings up to an order of magnitude speedup and even outperforms existing solutions (that consider no aggregative service) by 2-3 times.
Author Kim, Jiwon
He, Dan
Zhou, Xiaofang
Zhou, Thomas
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0001-9064-566X
  surname: He
  fullname: He, Dan
  organization: Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, QLD, Australia
– sequence: 2
  givenname: Thomas
  surname: Zhou
  fullname: Zhou, Thomas
  organization: Department of Computer Science, ETH Zürich, Zürich, Switzerland
– sequence: 3
  givenname: Xiaofang
  orcidid: 0000-0001-6343-1455
  surname: Zhou
  fullname: Zhou, Xiaofang
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
– sequence: 4
  givenname: Jiwon
  orcidid: 0000-0001-6380-3001
  surname: Kim
  fullname: Kim, Jiwon
  organization: Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, QLD, Australia
BookMark eNo9kFtLwzAUgINMcJv-APEl4HNnTpo0y2MZcw4mIlbEp5C1p7Nja2baivv3pmz4dC5858I3IoPa1UjILbAJANMP2TJ7m3DG-STmTAmtL8gQpJxGjEEy6HMuIs0kuyKjptmGrpAAQ_KZ1nRellVeYd3SdLdxvmq_9rR0nj7b32rf7Wnm7Rbz1vkjnbkf9HaD9LXDUH4ElqaHg3eBtG3larrorLd1i3hNLku7a_DmHMfk_XGezZ6i1ctiOUtXUQ5KthFoK3QSc7QKtMgLC2urCo0cEpzm64IrXsikYHlSCLvWSqNliWSqkKwUqGw8JvenveGL7w6b1mxd5-tw0nAlVAKglAwUnKjcu6bxWJqDDy_7owFmeoOmN2h6g-ZsMMzcnWYqRPzndbCoBIv_AIs6byk
CODEN ITISFG
Cites_doi 10.1109/FOCS.2018.00020
10.1145/261342.571216
10.14778/3291264.3291266
10.1109/MDM.2008.24
10.1016/j.trc.2019.12.004
10.1007/978-3-030-73194-6_44
10.1016/j.tcs.2010.06.026
10.1016/j.trc.2019.02.006
10.1109/TITS.2020.3019373
10.1145/3397536.3422350
10.1007/978-3-642-22922-0_14
10.1007/978-3-540-68552-4_24
10.1006/jagm.2001.1183
10.1145/3183713.3196913
10.3390/info12050202
10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
10.1061/(ASCE)0733-947X(2009)135:8(491)
10.14778/2904121.2904122
10.1145/1807167.1807197
10.2172/4785039
10.1109/SFCS.1978.1
10.1109/TKDE.2017.2776268
10.1007/978-3-319-22363-6_10
10.1145/602259.602266
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3207499
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 13
ExternalDocumentID 10_1109_TITS_2022_3207499
9905740
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Jockey Club Charities Trust
– fundername: Hong Kong Research Grants Council
  grantid: 16202722
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c175t-19a49632ea7194cda1ba7d9e216e8cbd272d56d0c6d4ab979ea06507d50f4e7a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862341300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 30 04:39:10 EST 2025
Sat Nov 29 06:35:01 EST 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c175t-19a49632ea7194cda1ba7d9e216e8cbd272d56d0c6d4ab979ea06507d50f4e7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6380-3001
0000-0001-6343-1455
0000-0001-9064-566X
PQID 2747611775
PQPubID 75735
PageCount 13
ParticipantIDs crossref_primary_10_1109_TITS_2022_3207499
ieee_primary_9905740
proquest_journals_2747611775
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
chao (ref9) 2017
ref1
ref17
ref16
pfoser (ref18) 2000
ref24
ref23
ref25
ref22
ref21
tao (ref20) 2001
tao (ref19) 2001
ref27
ref29
potts (ref28) 2010
ref8
ref7
ref4
ref3
ref6
manurangsi (ref26) 2018
bian (ref5) 2017; 70
References_xml – ident: ref25
  doi: 10.1109/FOCS.2018.00020
– ident: ref22
  doi: 10.1145/261342.571216
– ident: ref1
  doi: 10.14778/3291264.3291266
– ident: ref21
  doi: 10.1109/MDM.2008.24
– ident: ref30
  doi: 10.1016/j.trc.2019.12.004
– ident: ref15
  doi: 10.1007/978-3-030-73194-6_44
– ident: ref24
  doi: 10.1016/j.tcs.2010.06.026
– ident: ref29
  doi: 10.1016/j.trc.2019.02.006
– ident: ref31
  doi: 10.1109/TITS.2020.3019373
– ident: ref14
  doi: 10.1145/3397536.3422350
– ident: ref11
  doi: 10.1007/978-3-642-22922-0_14
– start-page: 431
  year: 2001
  ident: ref20
  article-title: MV3R-tree: A spatio-temporal access method for timestamp and interval queries
  publication-title: Proc Int Conf Very Large Data Bases
– ident: ref7
  doi: 10.1007/978-3-540-68552-4_24
– ident: ref23
  doi: 10.1006/jagm.2001.1183
– ident: ref8
  doi: 10.1145/3183713.3196913
– start-page: 247
  year: 2017
  ident: ref9
  article-title: A performance study on large-scale data analytics using disk-based and in-memory database systems
  publication-title: Proc IEEE Int Conf Big Data Smart Comput (BigComp)
– ident: ref16
  doi: 10.3390/info12050202
– ident: ref2
  doi: 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
– ident: ref27
  doi: 10.1061/(ASCE)0733-947X(2009)135:8(491)
– year: 2010
  ident: ref28
  publication-title: A guide for planning and operating flexible public transportation services
– ident: ref3
  doi: 10.14778/2904121.2904122
– ident: ref10
  doi: 10.1145/1807167.1807197
– volume: 70
  start-page: 498
  year: 2017
  ident: ref5
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
  publication-title: Proc 34th Int Conf Mach Learn
– start-page: 223
  year: 2001
  ident: ref19
  article-title: Efficient historical R-trees
  publication-title: Proc 13th Int Conf Sci Stat Database Manage (SSDBM)
– start-page: 395
  year: 2000
  ident: ref18
  article-title: Novel approaches to the indexing of moving object trajectories
  publication-title: Proc VLDB
– ident: ref6
  doi: 10.2172/4785039
– ident: ref4
  doi: 10.1109/SFCS.1978.1
– ident: ref13
  doi: 10.1109/TKDE.2017.2776268
– year: 2018
  ident: ref26
  article-title: A note on max k-vertex cover: Faster FPT-AS, smaller approximate kernel and improved approximation
  publication-title: arXiv 1810 03792
– ident: ref12
  doi: 10.1007/978-3-319-22363-6_10
– ident: ref17
  doi: 10.1145/602259.602266
SSID ssj0014511
Score 2.3726375
Snippet In this paper, we study the <inline-formula> <tex-math notation="LaTeX">k</tex-math> </inline-formula> Maximum Trajectory Coverage Query, which aims to find...
In this paper, we study the [Formula Omitted] Maximum Trajectory Coverage Query, which aims to find [Formula Omitted] routes in a public transport system that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Approximation algorithms
check-in trajectory
Greedy algorithms
location-based applications
Mathematical analysis
maximum coverage
Optimization
Public transportation
Route selection
Spatial database
Spatial databases
STEM
Trajectory
Transportation systems
Urban areas
Title An Efficient Algorithm for Maximum Trajectory Coverage Query With Approximation Guarantee
URI https://ieeexplore.ieee.org/document/9905740
https://www.proquest.com/docview/2747611775
Volume 23
WOSCitedRecordID wos000862341300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCDv9CIounBk3GwlW5dj4RANFGiERVPS39NMQIGNqP_va9loIlevK3Ja7P0a_u-19d-ReiEpKmSTck90hQ2zZiGXmyY9GTq6zi0hMQ933Z_yXq9eDDg1yV0trwLY4xxh89M3X66XL6eqNxulTVg5QwZhQB9hTE2v6u1zBhYnS2njUqoB2aLDGbg80b_on8LkSAh9SYBj-lkXr99kHtU5ddK7NxLd_N_P7aFNgoaiVtz3LdRyYx30PoPccEKemyNcccJREBd3Hp9mkyH2fMIA0vFV-JjOMpHGDzVi9u2_8Rte5YTFhd8kxsoPoAtblnBcbB06GE7miwOZhfddTv99rlXPKTgKWAHmRdwQWGiESNYwKnSIpCCaW5IEJlYSU0Y0WGkfRVpKiRn3AjL3JgO_ZQaJpp7qDyejM0-wpoqpsDDKeB9FFoRUvgm9AUwD6ogVKyi00XXJm9zvYzExRk-TywOicUhKXCooorty6Vh0Y1VVFuAkRQzapbY6DmyGebw4O9ah2jNtj0_alJD5WyamyO0qt6z4Wx67AbLFyghvck
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xaKIe_G3Enz14Mg630lF6XIwGIhCNqHhaurZTjICBYfS_97UMNNGLty157ZZ-bd_3-tqvAMc0TVVSToRHy9KmGdPQqxqeeEnq62poCYm7vu2-wVutaqcjrufgdHYWxhjjNp-Zkn10uXw9UGO7VHaGM2fIGQbo8yFjNJic1prlDKzSllNHpcxDw2kOM_DFWbvevsVYkNJSmaLPdEKv317IXavyay52DuZy9X-_tgYrOZEk0QT5dZgz_Q1Y_iEvuAmPUZ9cOIkILEui16fBsJs99wjyVNKUH93euEfQV724hftPcm53c-L0Qm7GBl8f0JZEVnIcLR1-xPYni4TZgrvLi_Z5zcuvUvAU8oPMC4RkONSokTwQTGkZJJJrYWhQMVWVaMqpDivaVxXNZCK4MNJyN65DP2WGy_I2FPqDvtkBopniCn2cQubHsBaZSN-EvkTuwRQGi0U4mTZt_DZRzIhdpOGL2OIQWxziHIcibNq2nBnmzViE_SkYcT6mRrGNnys2xxzu_l3qCBZr7WYjbtRbV3uwZL8z2XiyD4VsODYHsKDes-5oeOg6zhczCsEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Algorithm+for+Maximum+Trajectory+Coverage+Query+With+Approximation+Guarantee&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=He%2C+Dan&rft.au=Zhou%2C+Thomas&rft.au=Zhou%2C+Xiaofang&rft.au=Kim%2C+Jiwon&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=1524-9050&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTITS.2022.3207499&rft.externalDocID=9905740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon