Predicting Sustainable Development Goals Using Course Descriptions -- from LLMs to Conventional Foundation Models
We present our work on predicting United Nations sustainable development goals (SDG) for university courses. We use an LLM named PaLM 2 to generate training data given a noisy human-authored course description input as input. We use this data to train several different smaller language models to pre...
Uloženo v:
| Vydáno v: | Journal of data mining and digital humanities Ročník NLP4DH |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
INRIA
29.04.2024
Nicolas Turenne |
| Témata: | |
| ISSN: | 2416-5999, 2416-5999 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present our work on predicting United Nations sustainable development
goals (SDG) for university courses. We use an LLM named PaLM 2 to generate
training data given a noisy human-authored course description input as input.
We use this data to train several different smaller language models to predict
SDGs for university courses. This work contributes to better university level
adaptation of SDGs. The best performing model in our experiments was BART with
an F1-score of 0.786. |
|---|---|
| ISSN: | 2416-5999 2416-5999 |
| DOI: | 10.46298/jdmdh.13127 |