A weighted full-Newton step primal-dual interior point algorithm for convex quadratic optimization

In this paper a new weighted short-step primal-dual interior point algorithm to solve convex quadratic optimization (CQO) problems. The algorithm uses at each interior iteration afull-Newton step and the strategy of the central to obtain an epsilon-optimal solution of CQO. The algorithm yields the b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics, optimization & information computing Ročník 2; číslo 1; s. 21
Hlavní autor: Mohamed, Achache
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hong Kong International Academic Press (Hong Kong) 2014
Témata:
ISSN:2311-004X, 2310-5070
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a new weighted short-step primal-dual interior point algorithm to solve convex quadratic optimization (CQO) problems. The algorithm uses at each interior iteration afull-Newton step and the strategy of the central to obtain an epsilon-optimal solution of CQO. The algorithm yields the best currently best known theoretical complexity bound namely O(\sqrt(n) log n/epsilon).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2311-004X
2310-5070
DOI:10.19139/soic.v2i1.21