NEURAL ORDINARY DIFFERENTIAL EQUATIONS FOR TIME SERIES RECONSTRUCTION

Context. Neural Ordinary Differential Equations is a deep neural networks family that leverage numerical methods approaches for solving the problem of time series reconstruction, given small amount of unevenly distributed samples. Objective. The goal of the following research is the synthesis of a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radìoelektronika, informatika, upravlìnnâ H. 4; S. 69
1. Verfasser: Androsov, D. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 24.12.2023
ISSN:1607-3274, 2313-688X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Context. Neural Ordinary Differential Equations is a deep neural networks family that leverage numerical methods approaches for solving the problem of time series reconstruction, given small amount of unevenly distributed samples. Objective. The goal of the following research is the synthesis of a deep neural network that is able to solve input signal reconstruction and time series extrapolation task. Method. The proposed method exhibits the benefits of solving time series extrapolation task over forecasting one. A model that implements encoder-decoder architecture with differential equation solving in latent space, is proposed. The latter approach was proven to demonstrate outstanding performance in solving time series reconstruction task given a small percentage of noisy and uneven distributed input signals. The proposed Latent Ordinary Differential Equations Variational Autoencoder (LODE-VAE) model was benchmarked on synthetic non-stationary data with added white noise and randomly sampled with random intervals between each signal. Results. The proposed method was implemented via deep neural network to solve time series extrapolation task. Conclusions. The conducted experiments have confirmed that proposed model solves the given task effectively and is recommended to apply it to solving real-world problems that require reconstructing dynamics of non-stationary processes. The prospects for further research may include the process of computational optimization of proposed models, as well as conducting additional experiments involving different baselines, e. g. Generative Adversarial Networks or attention Networks.
AbstractList Context. Neural Ordinary Differential Equations is a deep neural networks family that leverage numerical methods approaches for solving the problem of time series reconstruction, given small amount of unevenly distributed samples. Objective. The goal of the following research is the synthesis of a deep neural network that is able to solve input signal reconstruction and time series extrapolation task. Method. The proposed method exhibits the benefits of solving time series extrapolation task over forecasting one. A model that implements encoder-decoder architecture with differential equation solving in latent space, is proposed. The latter approach was proven to demonstrate outstanding performance in solving time series reconstruction task given a small percentage of noisy and uneven distributed input signals. The proposed Latent Ordinary Differential Equations Variational Autoencoder (LODE-VAE) model was benchmarked on synthetic non-stationary data with added white noise and randomly sampled with random intervals between each signal. Results. The proposed method was implemented via deep neural network to solve time series extrapolation task. Conclusions. The conducted experiments have confirmed that proposed model solves the given task effectively and is recommended to apply it to solving real-world problems that require reconstructing dynamics of non-stationary processes. The prospects for further research may include the process of computational optimization of proposed models, as well as conducting additional experiments involving different baselines, e. g. Generative Adversarial Networks or attention Networks.
Author Androsov, D. V.
Author_xml – sequence: 1
  givenname: D. V.
  surname: Androsov
  fullname: Androsov, D. V.
BookMark eNo9kM1KxDAAhIOsYF33CbzkBaJJ89ceSzfVQG0xbUFPoUkTUHRXWi--vVsVTwMzHwMzl2BzOB4CANcE3xDOs-yWCCwRTSVDKU4pYkiegSSlhCKRZU8bkPwDF2C3LK8YY8IzQZhMgGrUYIoatmavm8I8w72uKmVU0-uTqx6Hotdt08GqNbDXDwp2ymjVQaPKk92boVzzK3Aex7cl7P50C4ZK9eU9qts7XRY18kSyTxRz4Tj2YZrCxPLcixDHyDimbpQhj8wJTiVlwjmMR-al4yeQTBF75lyYPN0C-tvr5-OyzCHaj_nlfZy_LMH25wy7brXrVrueYZmV9Bu0m088
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.15588/1607-3274-2023-4-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-688X
ExternalDocumentID 10_15588_1607_3274_2023_4_7
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c174t-f96b50cedded499c6efaf4503ba7e9f4b6537346bb00a4c7b5ded1df0c4bbedc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001165038500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1607-3274
IngestDate Sat Nov 29 05:06:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c174t-f96b50cedded499c6efaf4503ba7e9f4b6537346bb00a4c7b5ded1df0c4bbedc3
OpenAccessLink http://ric.zntu.edu.ua/article/download/294369/287145
ParticipantIDs crossref_primary_10_15588_1607_3274_2023_4_7
PublicationCentury 2000
PublicationDate 2023-12-24
PublicationDateYYYYMMDD 2023-12-24
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-24
  day: 24
PublicationDecade 2020
PublicationTitle Radìoelektronika, informatika, upravlìnnâ
PublicationYear 2023
SSID ssj0001586147
ssib018208917
ssib015895113
ssib044757822
Score 2.241844
Snippet Context. Neural Ordinary Differential Equations is a deep neural networks family that leverage numerical methods approaches for solving the problem of time...
SourceID crossref
SourceType Index Database
StartPage 69
Title NEURAL ORDINARY DIFFERENTIAL EQUATIONS FOR TIME SERIES RECONSTRUCTION
WOSCitedRecordID wos001165038500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-688X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586147
  issn: 1607-3274
  databaseCode: DOA
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-688X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044757822
  issn: 1607-3274
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5B4QAHxFNAAfnAzWxIvU8fq9QRkcBCjlOVk2Vv1hIqcqIkjfrzO7NrO4ZKiB642PFqNbY8X2a_Wc-DkI8xZktKK6lUtaEciBGN45pTJQ02ueJV5IrpnH9VaaovLuLvbUGFrWsnoJpGX1_H6_-qahgDZWPq7B3U3QuFAfgNSocjqB2O_6T4NFlkGM2Tnc3S0-xHeDabTpMsSfMZjCbAYH3iMHh_YT77loRzcOWSeZhhS8N5ni0m_aZVV7cbUICf0ycrWKIuXc-cS0c526Kru_byar0p97_8VGDFeO5DlzFucrVd7Z2JG4Xno-FuQ8QwcsMnObcGUuK-ZuQ764ysGwOKyKjUrkVwhxc-MIq-F8stWy2ExgSEXiJ19wOYHJam7nP8HytWH0eIHgyKKVBIgUIKFFLwQt0nDyIlYj3wssHEnAgNlPLAYLB8vR54rFj-UHUVDX2iuQYC41r0dM_Z1q7C-36-_fADfjMgKvlT8qT1MIJTj4xn5J5tnpPHg7qTL0jiMRJ0GAmGGAl6jASAkQAxEniMBL9j5CVZTJN88oW2_TSoAb9zR-tYVmJsLKxoS3B0jbR1WXMxZlWpLPxBKymYYlxWYIpLblQlYOLJsh4bXlV2adgrctSsGvuaBGUJTFOJpWLacKViXdlSmDrSJmI1U-IN-dS9hWLty6YUf1HW27tNPyaPDth8R452myv7njw0-93P7eaDU_gNicxNIw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NEURAL+ORDINARY+DIFFERENTIAL+EQUATIONS+FOR+TIME+SERIES+RECONSTRUCTION&rft.jtitle=Rad%C3%ACoelektronika%2C+informatika%2C+upravl%C3%ACnn%C3%A2&rft.au=Androsov%2C+D.+V.&rft.date=2023-12-24&rft.issn=1607-3274&rft.eissn=2313-688X&rft.issue=4&rft.spage=69&rft_id=info:doi/10.15588%2F1607-3274-2023-4-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_15588_1607_3274_2023_4_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-3274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-3274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-3274&client=summon