DHARMA: Discriminant hyperplane abstracting residuals minimization algorithm for separating clusters with fuzzy boundaries

The problem of learning the discriminant hyperplanes, given imperfectly supervised training sample sets (which include unreliably labeled samples along the joint boundaries between the sample clusters), represents the topic of this study. The approach is to view the problem as the classical linear i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 64; číslo 5; s. 823 - 824
Hlavní autor: Dasarathy, B.V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 1976
Témata:
ISSN:0018-9219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of learning the discriminant hyperplanes, given imperfectly supervised training sample sets (which include unreliably labeled samples along the joint boundaries between the sample clusters), represents the topic of this study. The approach is to view the problem as the classical linear inequality problem, but subject to certain additional minimization constraints, and convert it into an equivalent unconstrained linear inequality problem, which is then solved through one of the established procedures in this field.
ISSN:0018-9219
DOI:10.1109/PROC.1976.10222